Complex multifractal measures and a generalized multifractal formalism

被引:0
|
作者
Jezewski, W [1 ]
机构
[1] Polish Acad Sci, Inst Mol Phys, PL-60179 Poznan, Poland
关键词
multiscaling; multifractals;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Strongly inhomogeneous multifractal measures involving extremely diverse local probability scales and exhibiting left-sided multifractal spectra are considered. The standard multifractal formalism is extended to such drastically inhomogeneous multifractal measures by introducing additional filtering variables and scaling exponents, conjugated to these variables. It is shown that the generalized multifractal formalism provides a more adequate and complete description of complex structures of strongly inhomogeneous multifractal measures, in comparison with conventional formalism. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:419 / 430
页数:12
相关论文
共 50 条
  • [1] A Generalized Multifractal Formalism for the Estimation of Nonconcave Multifractal Spectra
    Leonarduzzi, Roberto
    Abry, Patrice
    Wendt, Herwig
    Jaffard, Stephane
    Touchette, Hugo
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (01) : 110 - 119
  • [2] A Multifractal Formalism for Hewitt–Stromberg Measures
    Najmeddine Attia
    Bilel Selmi
    [J]. The Journal of Geometric Analysis, 2021, 31 : 825 - 862
  • [3] Exceptions to the multifractal formalism for discontinuous measures
    Riedi, RH
    Mandelbrot, BB
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1998, 123 : 133 - 157
  • [4] MULTIFRACTAL FORMALISM FOR INFINITE MULTINOMIAL MEASURES
    RIEDI, RH
    MANDELBROT, BB
    [J]. ADVANCES IN APPLIED MATHEMATICS, 1995, 16 (02) : 132 - 150
  • [5] Multifractal Formalism for generalized selfsimilar functions
    BenSlimane, M
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (09): : 981 - 986
  • [6] A Multifractal Formalism for Hewitt-Stromberg Measures
    Attia, Najmeddine
    Selmi, Bilel
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (01) : 825 - 862
  • [7] Correction: A Multifractal Formalism for Hewitt–Stromberg Measures
    Najmeddine Attia
    Bilel Selmi
    [J]. The Journal of Geometric Analysis, 2022, 32
  • [8] A multifractal formalism for new general fractal measures
    Achour, Rim
    Li, Zhiming
    Selmi, Bilel
    Wang, Tingting
    [J]. CHAOS SOLITONS & FRACTALS, 2024, 181
  • [9] A MULTIFRACTAL FORMALISM
    OLSEN, L
    [J]. ADVANCES IN MATHEMATICS, 1995, 116 (01) : 82 - 196
  • [10] Multifractal formalism for self-affine measures with overlaps
    Qi-Rong Deng
    Sze-Man Ngai
    [J]. Archiv der Mathematik, 2009, 92 : 614 - 625