A Multifractal Formalism for Hewitt–Stromberg Measures

被引:0
|
作者
Najmeddine Attia
Bilel Selmi
机构
[1] University of Monastir,Analysis, Probability and Fractals Laboratory LR18ES17 Department of Mathematics, Faculty of Sciences of Monastir
来源
关键词
Multifractal analysis; Multifractal formalism; Hewitt–Stromberg measures; Hausdorff dimension; Packing dimension; Moran measures; 28A78; 28A80;
D O I
暂无
中图分类号
学科分类号
摘要
In the present work, we give a new multifractal formalism for which the classical multifractal formalism does not hold. We precisely introduce and study a multifractal formalism based on the Hewitt–Stromberg measures and that this formalism is completely parallel to Olsen’s multifractal formalism which is based on the Hausdorff and packing measures.
引用
收藏
页码:825 / 862
页数:37
相关论文
共 50 条
  • [1] Correction: A Multifractal Formalism for Hewitt–Stromberg Measures
    Najmeddine Attia
    Bilel Selmi
    [J]. The Journal of Geometric Analysis, 2022, 32
  • [2] A Multifractal Formalism for Hewitt-Stromberg Measures
    Attia, Najmeddine
    Selmi, Bilel
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (01) : 825 - 862
  • [3] A Review on Multifractal Analysis of Hewitt–Stromberg Measures
    Bilel Selmi
    [J]. The Journal of Geometric Analysis, 2022, 32
  • [4] REGULARITIES OF MULTIFRACTAL HEWITT-STROMBERG MEASURES
    Attia, Najmeddine
    Selmi, Bilel
    [J]. COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 34 (01): : 213 - 230
  • [5] A Multifractal Formalism for Hewitt-Stromberg Measures (vol 31, pg 825, 2021)
    Attia, Najmeddine
    Selmi, Bilel
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (12)
  • [6] A Review on Multifractal Analysis of Hewitt-Stromberg Measures
    Selmi, Bilel
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (01)
  • [7] A NOTE ON THE MULTIFRACTAL HEWITT-STROMBERG MEASURES IN A PROBABILITY SPACE
    Selmi, Bilel
    [J]. KOREAN JOURNAL OF MATHEMATICS, 2020, 28 (02): : 323 - 341
  • [8] On the projections of the multifractal Hewitt-Stromberg dimensions
    Selmi, Bilel
    [J]. FILOMAT, 2023, 37 (15) : 4869 - 4880
  • [9] On the mutual singularity of Hewitt–Stromberg measures for which the multifractal functions do not necessarily coincide
    Zied Douzi
    Bilel Selmi
    [J]. Ricerche di Matematica, 2023, 72 : 1 - 32
  • [10] THE SMOOTHNESS OF MULTIFRACTAL HEWITT-STROMBERG AND BOX DIMENSIONS
    Selmi, Bilel
    Zyoudi, Haythem
    [J]. JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2024, 2024