Dual multifractal spectra

被引:13
|
作者
Roux, S
Jensen, MH
机构
[1] UMR CNRS St Gobain, Lab Surface Verre & Interfaces, F-93303 Aubervilliers, France
[2] Niels Bohr Inst, DK-2100 Copenhagen O, Denmark
来源
PHYSICAL REVIEW E | 2004年 / 69卷 / 01期
关键词
D O I
10.1103/PhysRevE.69.016309
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The multifractal formalism characterizes the scaling properties of a physical density rho as a function of the distance L. To each singularity alpha of the field is attributed a fractal dimension for its support f(alpha). An alternative representation has been proposed by considering the distribution of distances associated to a fixed mass. Computing these spectra for a multifractal Cantor set, it is shown that these two approaches are dual to each other, and that both spectra as well as the moment scaling exponents are simply related. We apply the same inversion formalism to exponents obtained for turbulent statistics in the Gledzer-Ohkitani-Yamada shell model and observe that the same duality relation holds here.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Multifractal spectra and multifractal rigidity for horseshoes
    Barreira L.
    [J]. Journal of Dynamical and Control Systems, 1997, 3 (1) : 33 - 49
  • [2] Multifractal spectra and multifractal zeta-functions
    V. Mijović
    L. Olsen
    [J]. Aequationes mathematicae, 2017, 91 : 21 - 82
  • [3] Multifractal spectra and multifractal zeta-functions
    Mijovic, V.
    Olsen, L.
    [J]. AEQUATIONES MATHEMATICAE, 2017, 91 (01) : 21 - 82
  • [4] On the completeness of multifractal spectra
    Schmeling, J
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1999, 19 : 1595 - 1616
  • [5] Computing multifractal spectra
    Kagiso, D.
    Pollicott, M.
    [J]. DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2015, 30 (04): : 404 - 425
  • [6] On various multifractal spectra
    Véhel, JL
    Tricot, C
    [J]. FRACTAL GEOMETRY AND STOCHASTICS III, 2004, 57 : 23 - 42
  • [7] A Generalized Multifractal Formalism for the Estimation of Nonconcave Multifractal Spectra
    Leonarduzzi, Roberto
    Abry, Patrice
    Wendt, Herwig
    Jaffard, Stephane
    Touchette, Hugo
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (01) : 110 - 119
  • [8] Dynamical multifractal zeta-functions, multifractal pressure and fine multifractal spectra
    L. Olsen
    [J]. Journal d'Analyse Mathématique, 2017, 131 : 207 - 253
  • [9] DYNAMICAL MULTIFRACTAL ZETA-FUNCTIONS, MULTIFRACTAL PRESSURE AND FINE MULTIFRACTAL SPECTRA
    Olsen, L.
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2017, 131 : 207 - 253
  • [10] Conditional and relative multifractal spectra
    Riedi, RH
    Scheuring, I
    [J]. FRACTALS-AN INTERDISCIPLINARY JOURNAL ON THE COMPLEX GEOMETRY OF NATURE, 1997, 5 (01): : 153 - 168