Dual multifractal spectra

被引:13
|
作者
Roux, S
Jensen, MH
机构
[1] UMR CNRS St Gobain, Lab Surface Verre & Interfaces, F-93303 Aubervilliers, France
[2] Niels Bohr Inst, DK-2100 Copenhagen O, Denmark
来源
PHYSICAL REVIEW E | 2004年 / 69卷 / 01期
关键词
D O I
10.1103/PhysRevE.69.016309
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The multifractal formalism characterizes the scaling properties of a physical density rho as a function of the distance L. To each singularity alpha of the field is attributed a fractal dimension for its support f(alpha). An alternative representation has been proposed by considering the distribution of distances associated to a fixed mass. Computing these spectra for a multifractal Cantor set, it is shown that these two approaches are dual to each other, and that both spectra as well as the moment scaling exponents are simply related. We apply the same inversion formalism to exponents obtained for turbulent statistics in the Gledzer-Ohkitani-Yamada shell model and observe that the same duality relation holds here.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] First return times: Multifractal spectra and divergence points
    Olsen, L
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2004, 10 (03): : 635 - 656
  • [42] Symmetries of Multifractal Spectra and Field Theories of Anderson Localization
    Gruzberg, A.
    Ludwig, A. W. W.
    Mirlin, A. D.
    Zirnbauer, M. R.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 107 (08)
  • [43] Symmetry relations for multifractal spectra at random critical points
    Monthus, Cecile
    Berche, Bertrand
    Chatelain, Christophe
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2009,
  • [44] Large deviation for weak Gibbs measures and multifractal spectra
    Kesseböhmer, M
    [J]. NONLINEARITY, 2001, 14 (02) : 395 - 409
  • [45] Exact multifractal spectra for arbitrary Laplacian random walks
    Hastings, MB
    [J]. PHYSICAL REVIEW LETTERS, 2002, 88 (05) : 4
  • [46] The multifractal spectra for the recurrence rates of beta-transformations
    Ban, Jung-Chao
    Li, Bing
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 420 (02) : 1662 - 1679
  • [47] Multifractal spectra and precise rates of decay in homogeneous fragmentations
    Krell, Nathalie
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2008, 118 (06) : 897 - 916
  • [48] Lyapunov exponents, dual Lyapunov exponents, and multifractal analysis
    Fan, AH
    Jiang, YP
    [J]. CHAOS, 1999, 9 (04) : 849 - 853
  • [49] Multifractal spectra of atomic force microscope images of ZnO film
    Sun, X
    Xiong, G
    Fu, ZX
    Wu, ZQ
    [J]. ACTA PHYSICA SINICA, 2000, 49 (05) : 854 - 862
  • [50] Multifractal spectra of branching measure on a Galton-Watson tree
    Shieh, MR
    Taylor, SJ
    [J]. JOURNAL OF APPLIED PROBABILITY, 2002, 39 (01) : 100 - 111