Computing multifractal spectra

被引:1
|
作者
Kagiso, D. [1 ]
Pollicott, M. [1 ]
机构
[1] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
来源
基金
英国工程与自然科学研究理事会;
关键词
Hausdorff dimension; multifractal; Birkhoff Ergodic theorem;
D O I
10.1080/14689367.2015.1062977
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The famous Birkhoff ergodic theorem shows that given an ergodic measure the averages of an integrable function along typical orbits converge to the integral of the function. The multifractal spectra describe the sets of points for which the averages converge to another limit. In this note, we will consider the specific setting of conformal repellers and show how to estimate the Hausdorff dimensions of such sets via approximations to their alternative characterizations as zeros of appropriate determinant functions.
引用
收藏
页码:404 / 425
页数:22
相关论文
共 50 条
  • [1] Multifractal spectra and multifractal rigidity for horseshoes
    Barreira L.
    Journal of Dynamical and Control Systems, 1997, 3 (1) : 33 - 49
  • [2] An algorithm for computing non-concave multifractal spectra using the Sv spaces
    Kleyntssens, Thomas
    Esser, Celine
    Nicolay, Samuel
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 56 : 526 - 543
  • [3] Multifractal spectra and multifractal zeta-functions
    V. Mijović
    L. Olsen
    Aequationes mathematicae, 2017, 91 : 21 - 82
  • [4] Multifractal spectra and multifractal zeta-functions
    Mijovic, V.
    Olsen, L.
    AEQUATIONES MATHEMATICAE, 2017, 91 (01) : 21 - 82
  • [5] On the completeness of multifractal spectra
    Schmeling, J
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1999, 19 : 1595 - 1616
  • [6] On various multifractal spectra
    Véhel, JL
    Tricot, C
    FRACTAL GEOMETRY AND STOCHASTICS III, 2004, 57 : 23 - 42
  • [7] Dual multifractal spectra
    Roux, Stéphane
    Jensen, Mogens H.
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2004, 69 (1 2): : 163091 - 163096
  • [8] Dual multifractal spectra
    Roux, S
    Jensen, MH
    PHYSICAL REVIEW E, 2004, 69 (01): : 6
  • [9] A Generalized Multifractal Formalism for the Estimation of Nonconcave Multifractal Spectra
    Leonarduzzi, Roberto
    Abry, Patrice
    Wendt, Herwig
    Jaffard, Stephane
    Touchette, Hugo
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (01) : 110 - 119
  • [10] Dynamical multifractal zeta-functions, multifractal pressure and fine multifractal spectra
    L. Olsen
    Journal d'Analyse Mathématique, 2017, 131 : 207 - 253