Multifractal Spectra of Fragmentation Processes

被引:0
|
作者
Julien Berestycki
机构
[1] Université Pierre et Marie Curie et C.N.R.S,Laboratoire de Probabilités et Modèles Aléatoires
来源
关键词
Fragmentation; Galton–Watson trees; multifractal spectra;
D O I
暂无
中图分类号
学科分类号
摘要
Let (S(t),t≥0) be a homogeneous fragmentation of ]0,1[ with no loss of mass. For x∈]0,1[, we say that the fragmentation speed of x is v if and only if, as time passes, the size of the fragment that contains x decays exponentially with rate v. We show that there is vtyp>0 such that almost every point x∈]0,1[ has speed vtyp. Nonetheless, for v in a certain range, the random set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$G$$ \end{document}v of points of speed v, is dense in ]0,1[, and we compute explicitly the spectrum v→Dim(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$G$$ \end{document}v) where Dim is the Hausdorff dimension.
引用
收藏
页码:411 / 430
页数:19
相关论文
共 50 条
  • [31] Multifractal spectra of typical and prevalent measures
    Bayart, Frederic
    [J]. NONLINEARITY, 2013, 26 (02) : 353 - 367
  • [32] MULTIFRACTAL ANALYSIS OF FREQUENCY-SPECTRA
    GIONA, M
    MARRELLI, L
    PICCIRILLI, P
    [J]. JOURNAL OF NON-CRYSTALLINE SOLIDS, 1991, 131 : 71 - 75
  • [33] Variational principles and mixed multifractal spectra
    Barreira, L
    Saussol, B
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (10) : 3919 - 3944
  • [34] Specific heat of multifractal energy spectra
    Da Silva, L.R.
    Vallejos, R.O.
    Tsallis, C.
    Mendes, R.S.
    Roux, S.
    [J]. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2001, 64 (1 I): : 1 - 011104
  • [35] The metallic means family and multifractal spectra
    de Spinadel, VW
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 36 (06) : 721 - 745
  • [36] Specific heat of multifractal energy spectra
    da Silva, LR
    Vallejos, RO
    Tsallis, C
    Mendes, RS
    Roux, S
    [J]. PHYSICAL REVIEW E, 2001, 64 (01):
  • [37] MULTIFRACTAL ANALYSIS OF CHAOTIC POWER SPECTRA
    GIONA, M
    PICCIRILLI, P
    CIMAGALLI, V
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (01): : 367 - 373
  • [38] Exact solution and multifractal analysis of a multivariable fragmentation model
    Boyer, D
    Tarjus, G
    Viot, P
    [J]. JOURNAL DE PHYSIQUE I, 1997, 7 (01): : 13 - 38
  • [39] Multifractal Spectra of Random Self-Affine Multifractal Sierpinski Sponges in Rd
    Fraser, J. M.
    Olsen, L.
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2011, 60 (03) : 937 - 983
  • [40] FRAGMENTATION AND REARRANGEMENT PROCESSES IN HIGH-RESOLUTION MASS-SPECTRA OF DIPHENYLSILYL COMPOUNDS
    HO, BYK
    SPIALTER, L
    SMITHSON, LD
    [J]. ORGANIC MASS SPECTROMETRY, 1975, 10 (05): : 361 - 369