A generalized collapsing sandpile model

被引:0
|
作者
Noureddine Igbida
机构
[1] Université de Picardie Jules Verne,LAMFA, UMR 6140
来源
Archiv der Mathematik | 2010年 / 94卷
关键词
35A15; 35K65; 35K85; Sandpile; Collapsing; Avalanche; Time-steppingapproximation; Subgradient flows; Time dependent gradientconstraints; Nonlinear semigroup;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce a new model for the collapsing sandpile and we prove existence and uniqueness of a solution for the corresponding initial value problem. Moreover, we prove the convergence of the time-stepping approximation of the solution. We use subgradient flows for variational problems with time dependent gradient constraints. These gradient constraints are interpreted as the critical angles of the sandpile. In particular, our model produces an evolution in time of avalanches in a drying of a sandpile, rather than instantaneous collapse.
引用
收藏
页码:193 / 200
页数:7
相关论文
共 50 条
  • [41] Structure of Collapsing Solutions of Generalized Ricci Flow
    Steven Gindi
    Jeffrey Streets
    The Journal of Geometric Analysis, 2021, 31 : 4253 - 4286
  • [42] INVERSE AVALANCHES IN THE ABELIAN SANDPILE MODEL
    DHAR, D
    MANNA, SS
    PHYSICAL REVIEW E, 1994, 49 (04): : 2684 - 2687
  • [43] Wind on the boundary for the Abelian sandpile model
    Ruelle, Philippe
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2007,
  • [44] On the Sandpile Model of Modified Wheels I
    Raza, Zahid
    Waheed, Seemal Abdul
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2014, 15 (3-4) : 207 - 213
  • [45] The Abelian Sandpile model on an infinite tree
    Maes, C
    Redig, F
    Saada, E
    ANNALS OF PROBABILITY, 2002, 30 (04): : 2081 - 2107
  • [46] Criticality and transient chaos in a sandpile model
    Berndt, S
    Martienssen, W
    PHYSICAL REVIEW E, 1995, 52 (06) : R5749 - R5752
  • [47] THE SANDPILE MODEL: OPTIMAL STRESS AND HORMESIS
    Stark, Martha
    DOSE-RESPONSE, 2012, 10 (01): : 66 - 74
  • [48] A Stochastic Variant of the Abelian Sandpile Model
    Kim, Seungki
    Wang, Yuntao
    JOURNAL OF STATISTICAL PHYSICS, 2020, 178 (03) : 711 - 724
  • [49] Avalanche structure in a running sandpile model
    Carreras, BA
    Lynch, VE
    Newman, DE
    Sanchez, R
    PHYSICAL REVIEW E, 2002, 66 (01): : 1 - 011302
  • [50] Scaling behavior of the Abelian sandpile model
    Drossel, Barbara
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2000, 61 (03):