A generalized collapsing sandpile model

被引:0
|
作者
Noureddine Igbida
机构
[1] Université de Picardie Jules Verne,LAMFA, UMR 6140
来源
Archiv der Mathematik | 2010年 / 94卷
关键词
35A15; 35K65; 35K85; Sandpile; Collapsing; Avalanche; Time-steppingapproximation; Subgradient flows; Time dependent gradientconstraints; Nonlinear semigroup;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce a new model for the collapsing sandpile and we prove existence and uniqueness of a solution for the corresponding initial value problem. Moreover, we prove the convergence of the time-stepping approximation of the solution. We use subgradient flows for variational problems with time dependent gradient constraints. These gradient constraints are interpreted as the critical angles of the sandpile. In particular, our model produces an evolution in time of avalanches in a drying of a sandpile, rather than instantaneous collapse.
引用
收藏
页码:193 / 200
页数:7
相关论文
共 50 条
  • [31] Sandpile model with activity inhibition
    Manna, SS
    Giri, D
    PHYSICAL REVIEW E, 1997, 56 (05): : R4914 - R4917
  • [32] A MODEL FOR THE DYNAMICS OF SANDPILE SURFACES
    BOUCHAUD, JP
    CATES, ME
    PRAKASH, JR
    EDWARDS, SF
    JOURNAL DE PHYSIQUE I, 1994, 4 (10): : 1383 - 1410
  • [33] Sandpile model with activity inhibition
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1997, 56 (5-A pt A):
  • [34] Crossover from rotational to stochastic sandpile universality in the random rotational sandpile model
    Bhaumik, Himangsu
    Ahmed, Jahir Abbas
    Santra, S. B.
    PHYSICAL REVIEW E, 2014, 90 (06):
  • [35] The Stochastic Sandpile Model on Complete Graphs
    Selig, Thomas
    ELECTRONIC JOURNAL OF COMBINATORICS, 2024, 31 (03):
  • [36] Waves in the sandpile model on fractal lattices
    Daerden, F
    Priezzhev, VB
    Vanderzande, C
    PHYSICA A, 2001, 292 (1-4): : 43 - 54
  • [37] Structure of Collapsing Solutions of Generalized Ricci Flow
    Gindi, Steven
    Streets, Jeffrey
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (04) : 4253 - 4286
  • [38] HYSTERESIS AND METASTABILITY IN A CONTINUUM SANDPILE MODEL
    BOUCHAUD, JP
    CATES, ME
    PRAKASH, JR
    EDWARDS, SF
    PHYSICAL REVIEW LETTERS, 1995, 74 (11) : 1982 - 1985
  • [39] Avalanches and waves in the Abelian sandpile model
    Paczuski, M
    Boettcher, S
    PHYSICAL REVIEW E, 1997, 56 (04) : R3745 - R3748
  • [40] A Stochastic Variant of the Abelian Sandpile Model
    Seungki Kim
    Yuntao Wang
    Journal of Statistical Physics, 2020, 178 : 711 - 724