A generalized collapsing sandpile model

被引:0
|
作者
Noureddine Igbida
机构
[1] Université de Picardie Jules Verne,LAMFA, UMR 6140
来源
Archiv der Mathematik | 2010年 / 94卷
关键词
35A15; 35K65; 35K85; Sandpile; Collapsing; Avalanche; Time-steppingapproximation; Subgradient flows; Time dependent gradientconstraints; Nonlinear semigroup;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce a new model for the collapsing sandpile and we prove existence and uniqueness of a solution for the corresponding initial value problem. Moreover, we prove the convergence of the time-stepping approximation of the solution. We use subgradient flows for variational problems with time dependent gradient constraints. These gradient constraints are interpreted as the critical angles of the sandpile. In particular, our model produces an evolution in time of avalanches in a drying of a sandpile, rather than instantaneous collapse.
引用
收藏
页码:193 / 200
页数:7
相关论文
共 50 条
  • [21] A sandpile model for the distribution of rainfall?
    Aegerter, CM
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 319 : 1 - 10
  • [22] Back on stochastic model for sandpile
    Igbida, Noureddine
    RECENT DEVELOPMENTS IN NONLINEAR ANALYSIS, 2010, : 266 - 277
  • [23] On the predictability of the abelian sandpile model
    J. Andres Montoya
    Carolina Mejia
    Natural Computing, 2022, 21 : 69 - 79
  • [24] Kinetic energy sandpile model for conical sandpile development by revolving rivers
    Kong, XZ
    Hu, MB
    Wu, QS
    Wu, YH
    PHYSICS LETTERS A, 2006, 348 (3-6) : 77 - 81
  • [25] Generalized junction conditions for collapsing models
    Govender, G.
    Maharaj, S. D.
    Govender, M.
    VISHWA MIMANSA: AN INTERPRETATIVE EXPOSITION OF THE UNIVERSE. PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON GRAVITATION AND COSMOLOGY, 2014, 484
  • [26] THE SPECTRUM OF THE ABELIAN SANDPILE MODEL
    Hough, Robert
    Son, Hyojeong
    MATHEMATICS OF COMPUTATION, 2021, 90 (327) : 441 - 469
  • [27] Model for the dynamics of sandpile surfaces
    Bouchaud, J.P.
    Cates, M.E.
    Ravi Prakash, J.
    Edwards, S.F.
    Journal De Physique, I, 1994, 4 (10):
  • [28] Hormesis, adaptation, and the sandpile model
    Stark, Martha
    CRITICAL REVIEWS IN TOXICOLOGY, 2008, 38 (07) : 641 - 644
  • [29] Dynamics of a grain on a sandpile model
    Quartier, L
    Andreotti, B
    Douady, S
    Daerr, A
    PHYSICAL REVIEW E, 2000, 62 (06): : 8299 - 8307
  • [30] A sandpile model for proportionate growth
    Dhar, Deepak
    Sadhu, Tridib
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2013,