Structure of Collapsing Solutions of Generalized Ricci Flow

被引:0
|
作者
Steven Gindi
Jeffrey Streets
机构
[1] Binghamton University,Whitney Hall
[2] University of California,Rowland Hall
来源
关键词
Geometric flows; Collapsing; Entropy; 53C44;
D O I
暂无
中图分类号
学科分类号
摘要
We derive modified Perelman-type monotonicity formulas for solutions to the generalized Ricci flow equation with symmetry on principal bundles, which lead to rigidity and classification results for nonsingular solutions.
引用
收藏
页码:4253 / 4286
页数:33
相关论文
共 50 条
  • [1] Structure of Collapsing Solutions of Generalized Ricci Flow
    Gindi, Steven
    Streets, Jeffrey
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (04) : 4253 - 4286
  • [2] GENERALIZED RICCI FLOW AND SUPERGRAVITY VACUUM SOLUTIONS
    Hu, Sen
    Hu, Zhi
    Zhang, Ruoran
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2010, 25 (12): : 2535 - 2549
  • [3] Type II collapsing of maximal solutions to the Ricci flow in R2
    Daskalopoulos, P.
    del Pino, Manuel
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2007, 24 (06): : 851 - 874
  • [4] Ricci flow smoothing for locally collapsing manifolds
    Shaosai Huang
    Bing Wang
    Calculus of Variations and Partial Differential Equations, 2022, 61
  • [5] Ricci flow smoothing for locally collapsing manifolds
    Huang, Shaosai
    Wang, Bing
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (02)
  • [6] Collapsing of the Chern–Ricci flow on elliptic surfaces
    Valentino Tosatti
    Ben Weinkove
    Xiaokui Yang
    Mathematische Annalen, 2015, 362 : 1223 - 1271
  • [7] Collapsing sequences of solutions to the Ricci flow on 3-manifolds with almost nonnegative curvature
    Chow, Bennett
    Glickenstein, David
    Lu, Peng
    MATHEMATISCHE ZEITSCHRIFT, 2006, 254 (01) : 1 - 28
  • [8] Collapsing sequences of solutions to the Ricci flow on 3-manifolds with almost nonnegative curvature
    Bennett Chow
    David Glickenstein
    Peng Lu
    Mathematische Zeitschrift, 2006, 254 : 1 - 28
  • [9] Collapsing Geometry with Ricci Curvature Bounded Below and Ricci Flow Smoothing
    Huang, Shaosai
    Rong, Xiaochun
    Wang, Bing
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2020, 16
  • [10] Ancient solutions of Ricci flow on spheres and generalized Hopf fibrations
    Bakas, Loannis
    Kong, Shengli
    Ni, Lei
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2012, 663 : 209 - 248