GENERALIZED RICCI FLOW AND SUPERGRAVITY VACUUM SOLUTIONS

被引:6
|
作者
Hu, Sen [1 ]
Hu, Zhi [1 ]
Zhang, Ruoran [1 ]
机构
[1] Univ Sci & Technol China, Dept Math, Hefei 230026, Peoples R China
来源
关键词
Flux; generalized Calabi-Yau; generalized Dirac operator; generalized Ricci flow; STABILITY;
D O I
10.1142/S0217751X10048238
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We first give a proof that the supersymmetric configurations satisfy the equations of motion for type II supergravity. Influx compactifications, the string vacua preserving N = 2 supersymmetry are the twisted generalized Calabi-Yau manifold. The modulus space of the string vacua can be constructed. We discuss the generalized Dirac operator which adds a torsional term to the ordinary Dirac operator and compute its index by the path integral method. Via the variation of the action of supergravity one can introduce the generalized Ricci flow equations. We consider deforming the manifold with the generalized Ricci flow. Finally, we consider the linear stability of the fixed points of the generalized Ricci flow
引用
收藏
页码:2535 / 2549
页数:15
相关论文
共 50 条
  • [1] Structure of Collapsing Solutions of Generalized Ricci Flow
    Gindi, Steven
    Streets, Jeffrey
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (04) : 4253 - 4286
  • [2] Structure of Collapsing Solutions of Generalized Ricci Flow
    Steven Gindi
    Jeffrey Streets
    The Journal of Geometric Analysis, 2021, 31 : 4253 - 4286
  • [3] Ancient solutions of Ricci flow on spheres and generalized Hopf fibrations
    Bakas, Loannis
    Kong, Shengli
    Ni, Lei
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2012, 663 : 209 - 248
  • [4] GLOBAL VISCOSITY SOLUTIONS OF GENERALIZED KAHLER-RICCI FLOW
    Streets, Jeffrey
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (02) : 747 - 757
  • [5] Generalized Discrete Ricci Flow
    Yang, Yong-Liang
    Guo, Ren
    Luo, Feng
    Hu, Shi-Min
    Gu, Xianfeng
    COMPUTER GRAPHICS FORUM, 2009, 28 (07) : 2005 - 2014
  • [6] The generalized Kahler Ricci flow
    Liu, Jiawei
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 408 (02) : 751 - 761
  • [7] ETERNAL SOLUTIONS TO THE RICCI FLOW
    HAMILTON, RS
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1993, 38 (01) : 1 - 11
  • [8] Optimal Transport and Generalized Ricci Flow
    Kopfer, Eva
    Streets, Jeffrey
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2024, 20
  • [9] Generalized Ricci-Bourguignon flow
    Azami, Shahroud
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2024, 16 (02) : 638 - 662
  • [10] On the Dynamical Behaviour of the Generalized Ricci Flow
    Alberto Raffero
    Luigi Vezzoni
    The Journal of Geometric Analysis, 2021, 31 : 10498 - 10509