Stability and Cascades for the Kolmogorov–Zakharov Spectrum of Wave Turbulence

被引:0
|
作者
Charles Collot
Helge Dietert
Pierre Germain
机构
[1] Laboratoire Analyse,CNRS & CY Cergy Paris Université
[2] Géométrie et Modélisation (AGM),CNRS Institut de Mathématiques de Jussieu
[3] Université Paris Citć and Sorbonne Université,Paris Rive Gauche (IMJ
[4] New York University,PRG)
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We consider the kinetic wave equation arising in wave turbulence to describe the Fourier spectrum of solutions to the cubic Schrödinger equation. This equation has two Kolmogorov–Zakharov steady states corresponding to out-of-equilibrium cascades transferring, for the first solution mass from ∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\infty $$\end{document} to 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0$$\end{document} (small spatial scales to large scales), and for the second solution energy from 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0$$\end{document} to ∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\infty $$\end{document}. After conjecturing the generic development of the two cascades, we verify it partially in the isotropic case by proving the nonlinear stability of the mass cascade in the stationary setting. This constructs non-trivial out-of-equilibrium steady states with a direct energy cascade as well as an indirect mass cascade.
引用
收藏
相关论文
共 50 条
  • [1] Stability and Cascades for the Kolmogorov-Zakharov Spectrum of Wave Turbulence
    Collot, Charles
    Dietert, Helge
    Germain, Pierre
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2024, 248 (01)
  • [2] Stability and Cascades for the Kolmogorov-Zakharov Spectrum of Wave Turbulence
    Collot, Charles
    Dietert, Helge
    Germain, Pierre
    PHYSICAL REVIEW B, 2023, 108 (13)
  • [3] Evidence of the Zakharov-Kolmogorov spectrum in numerical simulations of inertial wave turbulence
    Reun, T. Le
    Favier, B.
    Bars, M. Le
    EPL, 2020, 132 (06)
  • [4] Role of dissipation in flexural wave turbulence: From experimental spectrum to Kolmogorov-Zakharov spectrum
    Miquel, Benjamin
    Alexakis, Alexandros
    Mordant, Nicolas
    PHYSICAL REVIEW E, 2014, 89 (06)
  • [5] Kolmogorov and Kelvin wave cascades in a generalized model for quantum turbulence
    Muller, Nicolas P.
    Krstulovic, Giorgio
    PHYSICAL REVIEW B, 2020, 102 (13)
  • [6] Superfluid Turbulence from Quantum Kelvin Wave to Classical Kolmogorov Cascades
    Yepez, Jeffrey
    Vahala, George
    Vahala, Linda
    Soe, Min
    PHYSICAL REVIEW LETTERS, 2009, 103 (08)
  • [7] On the Kolmogorov-Zakharov spectra of weak turbulence
    Balk, AM
    PHYSICA D, 2000, 139 (1-2): : 137 - 157
  • [8] Comment on "Superfluid Turbulence from Quantum Kelvin Wave to Classical Kolmogorov Cascades''
    L'vov, Victor
    Nazarenko, Sergey
    PHYSICAL REVIEW LETTERS, 2010, 104 (21)
  • [9] Comment on "Superfluid Turbulence from Quantum Kelvin Wave to Classical Kolmogorov Cascades"
    Krstulovic, Giorgio
    Brachet, Marc
    PHYSICAL REVIEW LETTERS, 2010, 105 (12)
  • [10] Random matrix model of Kolmogorov-Zakharov turbulence
    Frahm, Klaus M.
    Shepelyansky, Dima L.
    PHYSICAL REVIEW E, 2024, 109 (04)