Stability and Cascades for the Kolmogorov-Zakharov Spectrum of Wave Turbulence

被引:0
|
作者
Collot, Charles [1 ,2 ]
Dietert, Helge [3 ,4 ]
Germain, Pierre [5 ]
机构
[1] CNRS, 2 Ave Adolphe Chauvin, F-95300 Pontoise, France
[2] CY Cergy Paris Univ, Lab Anal Geometrie & Modelisat AGM, 2 Ave Adolphe Chauvin, F-95300 Pontoise, France
[3] Univ Paris Cite, CNRS, Inst Math Jussieu Paris Rive Gauche IMJ PRG, F-75013 Paris, France
[4] Sorbonne Univ, F-75013 Paris, France
[5] New York Univ, Courant Inst Math Sci, 251 Mercer St, New York, NY 10003 USA
基金
英国工程与自然科学研究理事会;
关键词
BOLTZMANN-EQUATION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the kinetic wave equation arising in wave turbulence to describe the Fourier spectrum of solutions to the cubic Schrodinger equation. This equation has two Kolmogorov-Zakharov steady states corresponding to out-of-equilibrium cascades transferring, for the first solution mass from infinity to 0 (small spatial scales to large scales), and for the second solution energy from 0 to infinity. After conjecturing the generic development of the two cascades, we verify it partially in the isotropic case by proving the nonlinear stability of the mass cascade in the stationary setting. This constructs non-trivial out-of-equilibrium steady states with a direct energy cascade as well as an indirect mass cascade.
引用
收藏
页数:31
相关论文
共 50 条
  • [1] Stability and Cascades for the Kolmogorov-Zakharov Spectrum of Wave Turbulence
    Collot, Charles
    Dietert, Helge
    Germain, Pierre
    PHYSICAL REVIEW B, 2023, 108 (13)
  • [2] Stability and Cascades for the Kolmogorov–Zakharov Spectrum of Wave Turbulence
    Charles Collot
    Helge Dietert
    Pierre Germain
    Archive for Rational Mechanics and Analysis, 2024, 248 (1)
  • [3] Role of dissipation in flexural wave turbulence: From experimental spectrum to Kolmogorov-Zakharov spectrum
    Miquel, Benjamin
    Alexakis, Alexandros
    Mordant, Nicolas
    PHYSICAL REVIEW E, 2014, 89 (06)
  • [4] On the Kolmogorov-Zakharov spectra of weak turbulence
    Balk, AM
    PHYSICA D, 2000, 139 (1-2): : 137 - 157
  • [5] Random matrix model of Kolmogorov-Zakharov turbulence
    Frahm, Klaus M.
    Shepelyansky, Dima L.
    PHYSICAL REVIEW E, 2024, 109 (04)
  • [6] Kolmogorov-Zakharov Spectrum in AdS Gravitational Collapse
    de Oliveira, H. P.
    Zayas, Leopoldo A. Pando
    Rodrigues, E. L.
    PHYSICAL REVIEW LETTERS, 2013, 111 (05)
  • [7] The Kolmogorov-Zakharov Model for Optical Fiber Communication
    Yousefi, Mansoor I.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (01) : 377 - 391
  • [8] Evidence of the Zakharov-Kolmogorov spectrum in numerical simulations of inertial wave turbulence
    Reun, T. Le
    Favier, B.
    Bars, M. Le
    EPL, 2020, 132 (06)
  • [9] On the Energy Cascade of 3-Wave Kinetic Equations: Beyond Kolmogorov-Zakharov Solutions
    Soffer, Avy
    Tran, Minh-Binh
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 376 (03) : 2229 - 2276
  • [10] Kolmogorov and Kelvin wave cascades in a generalized model for quantum turbulence
    Muller, Nicolas P.
    Krstulovic, Giorgio
    PHYSICAL REVIEW B, 2020, 102 (13)