共 50 条
Stability and Cascades for the Kolmogorov-Zakharov Spectrum of Wave Turbulence
被引:0
|作者:
Collot, Charles
[1
,2
]
Dietert, Helge
[3
,4
]
Germain, Pierre
[5
]
机构:
[1] CNRS, 2 Ave Adolphe Chauvin, F-95300 Pontoise, France
[2] CY Cergy Paris Univ, Lab Anal Geometrie & Modelisat AGM, 2 Ave Adolphe Chauvin, F-95300 Pontoise, France
[3] Univ Paris Cite, CNRS, Inst Math Jussieu Paris Rive Gauche IMJ PRG, F-75013 Paris, France
[4] Sorbonne Univ, F-75013 Paris, France
[5] New York Univ, Courant Inst Math Sci, 251 Mercer St, New York, NY 10003 USA
基金:
英国工程与自然科学研究理事会;
关键词:
BOLTZMANN-EQUATION;
D O I:
暂无
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We consider the kinetic wave equation arising in wave turbulence to describe the Fourier spectrum of solutions to the cubic Schrodinger equation. This equation has two Kolmogorov-Zakharov steady states corresponding to out-of-equilibrium cascades transferring, for the first solution mass from infinity to 0 (small spatial scales to large scales), and for the second solution energy from 0 to infinity. After conjecturing the generic development of the two cascades, we verify it partially in the isotropic case by proving the nonlinear stability of the mass cascade in the stationary setting. This constructs non-trivial out-of-equilibrium steady states with a direct energy cascade as well as an indirect mass cascade.
引用
收藏
页数:31
相关论文