Role of dissipation in flexural wave turbulence: From experimental spectrum to Kolmogorov-Zakharov spectrum

被引:29
|
作者
Miquel, Benjamin [1 ,2 ]
Alexakis, Alexandros [1 ]
Mordant, Nicolas [3 ]
机构
[1] Univ Paris 06, CNRS, Ecole Normale Super, Lab Phys Stat, F-75005 Paris, France
[2] Aix Marseille Univ, CNRS, Cent Marseille, IRPHE UMR 7342, F-13384 Marseille, France
[3] Univ Grenoble Alpes, Lab Ecoulements Geophys & Ind, F-38041 Grenoble, France
关键词
D O I
10.1103/PhysRevE.89.062925
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The weak turbulence theory has been applied to waves in thin elastic plates obeying the Foppl-Von Karman dynamical equations. Subsequent experiments have shown a strong discrepancy between the theoretical predictions and the measurements. Both the dynamical equations and the weak turbulence theory treatment require some restrictive hypotheses. Here a direct numerical simulation of the Foppl-Von Karman equations is performed and reproduces qualitatively and quantitatively the experimental results when the experimentally measured damping rate of waves gamma(k) = a + bk(2) is used. This confirms that the Foppl-Von Karman equations are a valid theoretical framework to describe our experiments. When we progressively tune the dissipation so that to localize it at the smallest scales, we observe a gradual transition between the experimental spectrum and the Kolmogorov-Zakharov prediction. Thus, it is shown that dissipation has a major influence on the scaling properties of stationary solutions of weakly nonlinear wave turbulence.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Stability and Cascades for the Kolmogorov-Zakharov Spectrum of Wave Turbulence
    Collot, Charles
    Dietert, Helge
    Germain, Pierre
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2024, 248 (01)
  • [2] Stability and Cascades for the Kolmogorov-Zakharov Spectrum of Wave Turbulence
    Collot, Charles
    Dietert, Helge
    Germain, Pierre
    PHYSICAL REVIEW B, 2023, 108 (13)
  • [3] Kolmogorov-Zakharov Spectrum in AdS Gravitational Collapse
    de Oliveira, H. P.
    Zayas, Leopoldo A. Pando
    Rodrigues, E. L.
    PHYSICAL REVIEW LETTERS, 2013, 111 (05)
  • [4] Stability and Cascades for the Kolmogorov–Zakharov Spectrum of Wave Turbulence
    Charles Collot
    Helge Dietert
    Pierre Germain
    Archive for Rational Mechanics and Analysis, 2024, 248 (1)
  • [5] On the Kolmogorov-Zakharov spectra of weak turbulence
    Balk, AM
    PHYSICA D, 2000, 139 (1-2): : 137 - 157
  • [6] Random matrix model of Kolmogorov-Zakharov turbulence
    Frahm, Klaus M.
    Shepelyansky, Dima L.
    PHYSICAL REVIEW E, 2024, 109 (04)
  • [7] Evidence of the Zakharov-Kolmogorov spectrum in numerical simulations of inertial wave turbulence
    Reun, T. Le
    Favier, B.
    Bars, M. Le
    EPL, 2020, 132 (06)
  • [8] On the Energy Cascade of 3-Wave Kinetic Equations: Beyond Kolmogorov-Zakharov Solutions
    Soffer, Avy
    Tran, Minh-Binh
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 376 (03) : 2229 - 2276
  • [9] Kolmogorov spectrum of quantum turbulence
    Kobayashi, M
    Tsubota, M
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2005, 74 (12) : 3248 - 3258
  • [10] EFFECT OF DISSIPATION ON THE STRUCTURE OF A STATIONARY WAVE TURBULENCE SPECTRUM
    RYZHENKOVA, IV
    FALKOVICH, GE
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1990, 98 (06): : 1931 - 1940