Evidence of the Zakharov-Kolmogorov spectrum in numerical simulations of inertial wave turbulence

被引:11
|
作者
Reun, T. Le [1 ,2 ]
Favier, B. [1 ]
Bars, M. Le [1 ]
机构
[1] Aix Marseille Univ, CNRS, Cent Marseille, IRPHE UMR 7342, Marseille, France
[2] Univ Cambridge, DAMTP, Wilberforce Rd, Cambridge CB3 0WA, England
基金
欧洲研究理事会;
关键词
ELLIPTIC INSTABILITY; DRIVEN;
D O I
10.1209/0295-5075/132/64002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Rotating turbulence is commonly known for being dominated by geostrophic vortices that are invariant along the rotation axis and undergo an inverse cascade. Yet, it has recently been shown to sustain fully three-dimensional states with a downscale energy cascade. In this letter, we investigate the statistical properties of three-dimensional rotating turbulence by the means of direct numerical simulations in a triply periodic box where geostrophic vortices are specifically damped. The resulting turbulent flow is an inertial wave turbulence that verifies the Zakharov-Kolmogorov spectrum derived analytically by Galtier (Galtier S., Phys. Rev. E, 68 (2003) 015301), thus offering numerical proof of the relevance of wave turbulence theory for three-dimensional, anisotropic waves. Lastly, we show that the same forcing leads to either geostrophic or wave turbulence depending on the initial conditions. Our results thus bring further evidence for bi-stability in rotating turbulent flows at low Rossby numbers.
引用
收藏
页数:7
相关论文
共 47 条
  • [1] Stability and Cascades for the Kolmogorov–Zakharov Spectrum of Wave Turbulence
    Charles Collot
    Helge Dietert
    Pierre Germain
    Archive for Rational Mechanics and Analysis, 2024, 248 (1)
  • [2] Stability and Cascades for the Kolmogorov-Zakharov Spectrum of Wave Turbulence
    Collot, Charles
    Dietert, Helge
    Germain, Pierre
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2024, 248 (01)
  • [3] Stability and Cascades for the Kolmogorov-Zakharov Spectrum of Wave Turbulence
    Collot, Charles
    Dietert, Helge
    Germain, Pierre
    PHYSICAL REVIEW B, 2023, 108 (13)
  • [4] Role of dissipation in flexural wave turbulence: From experimental spectrum to Kolmogorov-Zakharov spectrum
    Miquel, Benjamin
    Alexakis, Alexandros
    Mordant, Nicolas
    PHYSICAL REVIEW E, 2014, 89 (06)
  • [5] Inertial range and the Kolmogorov spectrum of quantum turbulence
    Tsubota, Makoto
    Kobayashi, Michikazu
    LOW TEMPERATURE PHYSICS, PTS A AND B, 2006, 850 : 219 - +
  • [6] Universality of the Kolmogorov constant in numerical simulations of turbulence
    Yeung, PK
    Zhou, Y
    PHYSICAL REVIEW E, 1997, 56 (02): : 1746 - 1752
  • [7] Parallel turbulence simulation: Resolving the inertial subrange of the Kolmogorov spectrum
    Strietzel, M
    Gerz, T
    VECTOR AND PARALLEL PROCESSING - VECPAR'98, 1999, 1573 : 227 - 237
  • [8] Locality of triad interaction and Kolmogorov constant in inertial wave turbulence
    David, Vincent
    Galtier, Sebastien
    JOURNAL OF FLUID MECHANICS, 2023, 955
  • [9] KOLMOGOROV-LIKE SPECTRUM FOR TURBULENCE OF INERTIAL-GRAVITY WAVES
    FALKOVICH, GE
    MEDVEDEV, SB
    EUROPHYSICS LETTERS, 1992, 19 (04): : 279 - 284
  • [10] Direct Numerical Simulation of Acoustic Turbulence: Zakharov–Sagdeev Spectrum
    E. A. Kochurin
    E. A. Kuznetsov
    JETP Letters, 2022, 116 : 863 - 868