Role of dissipation in flexural wave turbulence: From experimental spectrum to Kolmogorov-Zakharov spectrum

被引:29
|
作者
Miquel, Benjamin [1 ,2 ]
Alexakis, Alexandros [1 ]
Mordant, Nicolas [3 ]
机构
[1] Univ Paris 06, CNRS, Ecole Normale Super, Lab Phys Stat, F-75005 Paris, France
[2] Aix Marseille Univ, CNRS, Cent Marseille, IRPHE UMR 7342, F-13384 Marseille, France
[3] Univ Grenoble Alpes, Lab Ecoulements Geophys & Ind, F-38041 Grenoble, France
关键词
D O I
10.1103/PhysRevE.89.062925
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The weak turbulence theory has been applied to waves in thin elastic plates obeying the Foppl-Von Karman dynamical equations. Subsequent experiments have shown a strong discrepancy between the theoretical predictions and the measurements. Both the dynamical equations and the weak turbulence theory treatment require some restrictive hypotheses. Here a direct numerical simulation of the Foppl-Von Karman equations is performed and reproduces qualitatively and quantitatively the experimental results when the experimentally measured damping rate of waves gamma(k) = a + bk(2) is used. This confirms that the Foppl-Von Karman equations are a valid theoretical framework to describe our experiments. When we progressively tune the dissipation so that to localize it at the smallest scales, we observe a gradual transition between the experimental spectrum and the Kolmogorov-Zakharov prediction. Thus, it is shown that dissipation has a major influence on the scaling properties of stationary solutions of weakly nonlinear wave turbulence.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Kolmogorov's hypotheses and global energy spectrum of turbulence
    Liao, Zi-Ju
    Su, Wei-Dong
    PHYSICS OF FLUIDS, 2015, 27 (04)
  • [22] SCREENING APPROXIMATION AND THE KOLMOGOROV SPECTRUM OF HOMOGENEOUS ISOTROPIC TURBULENCE
    BHATTACHARJEE, JK
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (10): : L347 - L350
  • [23] Strong turbulence for vibrating plates: Emergence of a Kolmogorov spectrum
    During, Gustavo
    Josserand, Christophe
    Krstulovic, Giorgio
    Rica, Sergio
    PHYSICAL REVIEW FLUIDS, 2019, 4 (06)
  • [24] TOPOLOGICAL MEANING OF THE SLOPE OF THE KOLMOGOROV SPECTRUM OF MAGNETIC TURBULENCE
    Akhmet'ev, P. M.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2021, 209 (02) : 1620 - 1632
  • [25] Quantum Turbulence: Vortex Bundle Collapse and Kolmogorov Spectrum
    Sergey K. Nemirovskii
    Journal of Low Temperature Physics, 2016, 185 : 371 - 376
  • [26] Topological meaning of the slope of the Kolmogorov spectrum of magnetic turbulence
    P. M. Akhmet’ev
    Theoretical and Mathematical Physics, 2021, 209 : 1620 - 1632
  • [27] A linear model of turbulence: reproducing the Kolmogorov-spectrum
    Bak, Bendeguz Derso
    Kalmar-Nagy, Tamas
    IFAC PAPERSONLINE, 2018, 51 (02): : 595 - 600
  • [28] Quantum Turbulence: Vortex Bundle Collapse and Kolmogorov Spectrum
    Nemirovskii, Sergey K.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2016, 185 (5-6) : 371 - 376
  • [29] Direct Numerical Simulation of Acoustic Turbulence: Zakharov–Sagdeev Spectrum
    E. A. Kochurin
    E. A. Kuznetsov
    JETP Letters, 2022, 116 : 863 - 868
  • [30] Energy spectrum in the dissipation range of fluid turbulence
    Martinez, D.O.
    Chen, S.
    Doolen, G.D.
    Kraichnan, R.H.
    Wang, L.-P.
    Zhou, Y.
    Journal of Plasma Physics, 1997, 57 (Pt 1): : 195 - 201