Stability and Cascades for the Kolmogorov–Zakharov Spectrum of Wave Turbulence

被引:0
|
作者
Charles Collot
Helge Dietert
Pierre Germain
机构
[1] Laboratoire Analyse,CNRS & CY Cergy Paris Université
[2] Géométrie et Modélisation (AGM),CNRS Institut de Mathématiques de Jussieu
[3] Université Paris Citć and Sorbonne Université,Paris Rive Gauche (IMJ
[4] New York University,PRG)
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We consider the kinetic wave equation arising in wave turbulence to describe the Fourier spectrum of solutions to the cubic Schrödinger equation. This equation has two Kolmogorov–Zakharov steady states corresponding to out-of-equilibrium cascades transferring, for the first solution mass from ∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\infty $$\end{document} to 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0$$\end{document} (small spatial scales to large scales), and for the second solution energy from 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0$$\end{document} to ∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\infty $$\end{document}. After conjecturing the generic development of the two cascades, we verify it partially in the isotropic case by proving the nonlinear stability of the mass cascade in the stationary setting. This constructs non-trivial out-of-equilibrium steady states with a direct energy cascade as well as an indirect mass cascade.
引用
收藏
相关论文
共 50 条
  • [41] ON THE INFLUENCE OF WEAK ANISOTROPY OF PUMP ON KOLMOGOROV SPECTRUM OF ACOUSTIC TURBULENCE
    FALKOVICH, GE
    SHAFARENKO, AV
    DOKLADY AKADEMII NAUK SSSR, 1988, 301 (02): : 297 - 300
  • [42] On the Energy Cascade of 3-Wave Kinetic Equations: Beyond Kolmogorov–Zakharov Solutions
    Avy Soffer
    Minh-Binh Tran
    Communications in Mathematical Physics, 2020, 376 : 2229 - 2276
  • [43] Locality and stability of the cascades of two-dimensional turbulence
    Gkioulekas, Eleftherios
    PHYSICAL REVIEW E, 2008, 78 (06):
  • [44] Locality of triad interaction and Kolmogorov constant in inertial wave turbulence
    David, Vincent
    Galtier, Sebastien
    JOURNAL OF FLUID MECHANICS, 2023, 955
  • [45] Bumps of the wave structure function in non-Kolmogorov turbulence
    Qiao, Chunhong
    Lu, Lu
    Zhang, Pengfei
    Wang, Haitao
    Huang, Honghua
    Fan, Chengyu
    OPTICS IN ATMOSPHERIC PROPAGATION AND ADAPTIVE SYSTEMS XVIII, 2015, 9641
  • [46] ON THE KINETIC EQUATION IN ZAKHAROV'S WAVE TURBULENCE THEORY FOR CAPILLARY WAVES
    Nguyen, Toan T.
    Tran, Minh-Binh
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (02) : 2020 - 2047
  • [47] Limits on Wave Optics Simulations in Non-Kolmogorov Turbulence
    Grulke, Stephen
    Bos, Jeremy P.
    LASER COMMUNICATION AND PROPAGATION THROUGH THE ATMOSPHERE AND OCEANS VII, 2018, 10770
  • [48] Generalized atmospheric turbulence MTF for wave propagating through non-Kolmogorov turbulence
    Cui Lin-yan
    Xue Bin-dang
    Cao Xiao-guang
    Dong Jian-kang
    Wang Jie-ning
    OPTICS EXPRESS, 2010, 18 (20): : 21269 - 21283
  • [49] On the Energy Cascade of 3-Wave Kinetic Equations: Beyond Kolmogorov-Zakharov Solutions
    Soffer, Avy
    Tran, Minh-Binh
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 376 (03) : 2229 - 2276
  • [50] Self-similar formation of the Kolmogorov spectrum in the Leith model of turbulence
    Nazarenko, S. V.
    Grebenev, V. N.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (03)