Optimal partition problems for the fractional Laplacian

被引:0
|
作者
Antonella Ritorto
机构
[1] FCEN – Universidad de Buenos Aires and IMAS – CONICET,Departamento de Matemática
关键词
Fractional partial equations; Fractional capacities; Optimal partition; 35R11; 49Q10;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we prove an existence result for an optimal partition problem of the form min{Fs(A1,…,Am):Ai∈As,Ai∩Aj=∅fori≠j},\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \min \{F_s(A_1,\ldots ,A_m):A_i \in {\mathcal {A}}_s, \, A_i\cap A_j =\emptyset \text{ for } i\ne j\}, \end{aligned}$$\end{document}where Fs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_s$$\end{document} is a cost functional with suitable assumptions of monotonicity and lower semicontinuity, As\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}_s$$\end{document} is the class of admissible domains and the condition Ai∩Aj=∅\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_i\cap A_j =\emptyset $$\end{document} is understood in the sense of Gagliardo s-capacity, where 0<s<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<s<1$$\end{document}. Examples of this type of problem are related to fractional eigenvalues. As the main outcome of this article, we prove some type of convergence of the s-minimizers to the minimizer of the problem with s=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s=1$$\end{document}, studied in [5].
引用
收藏
页码:501 / 516
页数:15
相关论文
共 50 条