Optimal partition problems for the fractional Laplacian

被引:0
|
作者
Antonella Ritorto
机构
[1] FCEN – Universidad de Buenos Aires and IMAS – CONICET,Departamento de Matemática
关键词
Fractional partial equations; Fractional capacities; Optimal partition; 35R11; 49Q10;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we prove an existence result for an optimal partition problem of the form min{Fs(A1,…,Am):Ai∈As,Ai∩Aj=∅fori≠j},\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \min \{F_s(A_1,\ldots ,A_m):A_i \in {\mathcal {A}}_s, \, A_i\cap A_j =\emptyset \text{ for } i\ne j\}, \end{aligned}$$\end{document}where Fs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_s$$\end{document} is a cost functional with suitable assumptions of monotonicity and lower semicontinuity, As\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}_s$$\end{document} is the class of admissible domains and the condition Ai∩Aj=∅\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_i\cap A_j =\emptyset $$\end{document} is understood in the sense of Gagliardo s-capacity, where 0<s<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<s<1$$\end{document}. Examples of this type of problem are related to fractional eigenvalues. As the main outcome of this article, we prove some type of convergence of the s-minimizers to the minimizer of the problem with s=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s=1$$\end{document}, studied in [5].
引用
收藏
页码:501 / 516
页数:15
相关论文
共 50 条
  • [31] BOUNDED RESONANT PROBLEMS DRIVEN BY FRACTIONAL LAPLACIAN
    Chen, Yutong
    Su, Jiabao
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2021, 57 (02) : 635 - 661
  • [32] The Problems of the Obstacle in Lower Dimension and for the Fractional Laplacian
    Salsa, Sandro
    REGULARITY ESTIMATES FOR NONLINEAR ELLIPTIC AND PARABOLIC PROBLEMS: CETRARO, ITALY 2009, 2012, 2045 : 153 - 244
  • [33] POSITIVE SOLUTIONS FOR NONLINEAR FRACTIONAL LAPLACIAN PROBLEMS
    Hollifield, Elliott
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, : 135 - 149
  • [34] Remarks on eigenvalue problems for fractional p(.)-Laplacian
    Bahrouni, Anouar
    Ho, Ky
    ASYMPTOTIC ANALYSIS, 2021, 123 (1-2) : 139 - 156
  • [35] On nonlocal Henan type problems with the fractional Laplacian
    Ma, Li
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 203
  • [36] Semilinear problems for the fractional laplacian with a singular nonlinearity
    Barrios, Begona
    De Bonis, Ida
    Medina, Maria
    Peral, Ireneo
    OPEN MATHEMATICS, 2015, 13 : 390 - 407
  • [37] On some critical problems for the fractional Laplacian operator
    Barrios, B.
    Colorado, E.
    de Pablo, A.
    Sanchez, U.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (11) : 6133 - 6162
  • [38] SINGULAR CRITICAL ELLIPTIC PROBLEMS WITH FRACTIONAL LAPLACIAN
    Wang, Xueqiao
    Yang, Jianfu
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015,
  • [39] Variational problems with free boundaries for the fractional Laplacian
    Caffarelli, Luis A.
    Roquejoffre, Jean-Michel
    Sire, Yannick
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2010, 12 (05) : 1151 - 1179
  • [40] A regularity theory for optimal partition problems
    Conti, M
    Verzini, G
    Terracini, S
    SPT 2004: SYMMETRY AND PERTURBATION THEORY, 2005, : 91 - 98