Optimal partition problems for the fractional Laplacian

被引:0
|
作者
Antonella Ritorto
机构
[1] FCEN – Universidad de Buenos Aires and IMAS – CONICET,Departamento de Matemática
关键词
Fractional partial equations; Fractional capacities; Optimal partition; 35R11; 49Q10;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we prove an existence result for an optimal partition problem of the form min{Fs(A1,…,Am):Ai∈As,Ai∩Aj=∅fori≠j},\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \min \{F_s(A_1,\ldots ,A_m):A_i \in {\mathcal {A}}_s, \, A_i\cap A_j =\emptyset \text{ for } i\ne j\}, \end{aligned}$$\end{document}where Fs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_s$$\end{document} is a cost functional with suitable assumptions of monotonicity and lower semicontinuity, As\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}_s$$\end{document} is the class of admissible domains and the condition Ai∩Aj=∅\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_i\cap A_j =\emptyset $$\end{document} is understood in the sense of Gagliardo s-capacity, where 0<s<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<s<1$$\end{document}. Examples of this type of problem are related to fractional eigenvalues. As the main outcome of this article, we prove some type of convergence of the s-minimizers to the minimizer of the problem with s=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s=1$$\end{document}, studied in [5].
引用
收藏
页码:501 / 516
页数:15
相关论文
共 50 条
  • [21] A note on fractional -Laplacian problems with singular weights
    Ho, Ky
    Perera, Kanishka
    Sim, Inbo
    Squassina, Marco
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2017, 19 (01) : 157 - 173
  • [22] On critical Kirchhoff problems driven by the fractional Laplacian
    Appolloni, Luigi
    Bisci, Giovanni Molica
    Secchi, Simone
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (06)
  • [23] Elliptic problems involving the fractional Laplacian in RN
    Autuori, Giuseppina
    Pucci, Patrizia
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (08) : 2340 - 2362
  • [24] Some bifurcation results for fractional Laplacian problems
    Chhetri, Maya
    Girg, Petr
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 191
  • [25] Multiplicity existence for sublinear fractional Laplacian problems
    Fu, Yongqiang
    Pucci, Patrizia
    APPLICABLE ANALYSIS, 2017, 96 (09) : 1497 - 1508
  • [26] ON SHAPE OPTIMIZATION PROBLEMS INVOLVING THE FRACTIONAL LAPLACIAN
    Dalibard, Anne-Laure
    Gerard-Varet, David
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2013, 19 (04) : 976 - 1013
  • [27] ON FRACTIONAL p-LAPLACIAN PROBLEMS WITH WEIGHT
    Lehrer, Raquel
    Maia, Liliane A.
    Squassina, Marco
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2015, 28 (1-2) : 15 - 28
  • [28] ON NONLOCAL NONLINEAR ELLIPTIC PROBLEMS WITH THE FRACTIONAL LAPLACIAN
    Ma, Li
    GLASGOW MATHEMATICAL JOURNAL, 2020, 62 (01) : 75 - 84
  • [29] On critical Kirchhoff problems driven by the fractional Laplacian
    Luigi Appolloni
    Giovanni Molica Bisci
    Simone Secchi
    Calculus of Variations and Partial Differential Equations, 2021, 60
  • [30] ON NONLOCAL FRACTIONAL LAPLACIAN PROBLEMS WITH OSCILLATING POTENTIALS
    Ambrosio, Vincenzo
    D'Onofrio, Luigi
    Bisci, Giovanni Molica
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2018, 48 (05) : 1399 - 1436