Extremality Conditions and Regularity of Solutions to Optimal Partition Problems Involving Laplacian Eigenvalues

被引:0
|
作者
Miguel Ramos
Hugo Tavares
Susanna Terracini
机构
[1] University of Lisbon,Faculty of Sciences
[2] Universidade de Lisboa,Center for Mathematical Analysis, Geometry and Dynamical Systems, Instituto Superior Técnico
[3] Università di Torino,Dipartimento di Matematica “Giuseppe Peano”
关键词
Extremality Condition; Regularity Result; Optimal Partition; Monotonicity Formula; Regular Partition;
D O I
暂无
中图分类号
学科分类号
摘要
Let Ω⊂RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Omega \subset \mathbb{R}^N}$$\end{document} be an open bounded domain and m∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${m \in \mathbb{N}}$$\end{document}. Given k1,…,km∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${k_1,\ldots,k_m \in \mathbb{N}}$$\end{document}, we consider a wide class of optimal partition problems involving Dirichlet eigenvalues of elliptic operators, of the following form infF(λk1(ω1),…,λkm(ωm)):(ω1,…,ωm)∈Pm(Ω),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm inf}\left\{F({\lambda_{k_{1}}}(\omega_1),\ldots,\lambda_{k_m}(\omega_m)):\ (\omega_1,\ldots, \omega_m) \in \mathcal{P}_m(\Omega)\right\},$$\end{document}where λki(ωi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda_{k_i}(\omega_i)}$$\end{document} denotes the ki-th eigenvalue of (-Δ,H01(ωi))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(-\Delta,H^{1}_{0}(\omega_i))}$$\end{document} counting multiplicities, and Pm(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{P}_m(\Omega)}$$\end{document} is the set of all open partitions of Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Omega}$$\end{document}, namely Pm(Ω)=(ω1,…,ωm):ωi⊂Ωopen,ωi∩ωj=∅∀i≠j.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{P}_m(\Omega)=\left\{(\omega_1, \ldots, \omega_m):\omega_i \subset \Omega \, {\rm open},\ \omega_{i} \cap\omega_j=\emptyset\,\forall i \neq j \right\}.$$\end{document}While the existence of a quasi-open optimal partition (ω1,…,ωm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(\omega_1,\ldots, \omega_m)}$$\end{document} follows from a general result by Bucur, Buttazzo and Henrot [Adv Math Sci Appl 8(2):571–579, 1998], the aim of this paper is to associate with such minimal partitions and their eigenfunctions some suitable extremality conditions and to exploit them, proving as well the Lipschitz continuity of some eigenfunctions, and the regularity of the partition in the sense that the free boundary ∪i=1m∂ωi∩Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cup_{i=1}^m \partial \omega_{i} \cap \Omega}$$\end{document} is, up to a residual set, locally a C1,α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${C^{1,\alpha}}$$\end{document} hypersurface. This last result extends the ones in the paper by Caffarelli and Lin [J Sci Comput 31(1–2):5–18, 2007] to the case of higher eigenvalues.
引用
收藏
页码:363 / 443
页数:80
相关论文
共 50 条
  • [1] Extremality Conditions and Regularity of Solutions to Optimal Partition Problems Involving Laplacian Eigenvalues
    Ramos, Miguel
    Tavares, Hugo
    Terracini, Susanna
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 220 (01) : 363 - 443
  • [2] Laplacian eigenvalues and partition problems in hypergraphs
    Rodriguez, J. A.
    APPLIED MATHEMATICS LETTERS, 2009, 22 (06) : 916 - 921
  • [3] Optimal Regularity Results Related to a Partition Problem Involving the Half-Laplacian
    Zilio, Alessandro
    NEW TRENDS IN SHAPE OPTIMIZATION, 2015, 166 : 301 - 314
  • [4] Optimal regularity of stable solutions to nonlinear equations involving the p-Laplacian
    Cabre, Xavier
    Miraglio, Pietro
    Sanchon, Manel
    ADVANCES IN CALCULUS OF VARIATIONS, 2022, 15 (04) : 749 - 785
  • [5] Optimal partition problems for the fractional Laplacian
    Ritorto, Antonella
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2018, 197 (02) : 501 - 516
  • [6] Optimal partition problems for the fractional Laplacian
    Antonella Ritorto
    Annali di Matematica Pura ed Applicata (1923 -), 2018, 197 : 501 - 516
  • [7] A regularity theory for optimal partition problems
    Conti, M
    Verzini, G
    Terracini, S
    SPT 2004: SYMMETRY AND PERTURBATION THEORY, 2005, : 91 - 98
  • [8] REGULARITY AND NONEXISTENCE OF SOLUTIONS FOR A SYSTEM INVOLVING THE FRACTIONAL LAPLACIAN
    Tang, De
    Fang, Yanqin
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2015, 14 (06) : 2431 - 2451
  • [9] OPTIMAL BOUNDARY REGULARITY AND A HOPF-TYPE LEMMA FOR DIRICHLET PROBLEMS INVOLVING THE LOGARITHMIC LAPLACIAN
    Hernandez-Santamaria, Victor
    Rios, Luis Fernando Lopez
    Saldana, Alberto
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2025, 45 (01) : 1 - 36
  • [10] Existence of solutions for a class of problems in involving the -Laplacian
    Alves, CO
    Souto, MAS
    CONTRIBUTIONS TO NONLINEAR ANALYSIS: A TRIBUTE TO D. G. DE FIGUEIREDO ON THE OCCASION OF HIS 70TH BIRTHDAY, 2006, 66 : 17 - +