Extremality Conditions and Regularity of Solutions to Optimal Partition Problems Involving Laplacian Eigenvalues

被引:0
|
作者
Miguel Ramos
Hugo Tavares
Susanna Terracini
机构
[1] University of Lisbon,Faculty of Sciences
[2] Universidade de Lisboa,Center for Mathematical Analysis, Geometry and Dynamical Systems, Instituto Superior Técnico
[3] Università di Torino,Dipartimento di Matematica “Giuseppe Peano”
关键词
Extremality Condition; Regularity Result; Optimal Partition; Monotonicity Formula; Regular Partition;
D O I
暂无
中图分类号
学科分类号
摘要
Let Ω⊂RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Omega \subset \mathbb{R}^N}$$\end{document} be an open bounded domain and m∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${m \in \mathbb{N}}$$\end{document}. Given k1,…,km∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${k_1,\ldots,k_m \in \mathbb{N}}$$\end{document}, we consider a wide class of optimal partition problems involving Dirichlet eigenvalues of elliptic operators, of the following form infF(λk1(ω1),…,λkm(ωm)):(ω1,…,ωm)∈Pm(Ω),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm inf}\left\{F({\lambda_{k_{1}}}(\omega_1),\ldots,\lambda_{k_m}(\omega_m)):\ (\omega_1,\ldots, \omega_m) \in \mathcal{P}_m(\Omega)\right\},$$\end{document}where λki(ωi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda_{k_i}(\omega_i)}$$\end{document} denotes the ki-th eigenvalue of (-Δ,H01(ωi))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(-\Delta,H^{1}_{0}(\omega_i))}$$\end{document} counting multiplicities, and Pm(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{P}_m(\Omega)}$$\end{document} is the set of all open partitions of Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Omega}$$\end{document}, namely Pm(Ω)=(ω1,…,ωm):ωi⊂Ωopen,ωi∩ωj=∅∀i≠j.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{P}_m(\Omega)=\left\{(\omega_1, \ldots, \omega_m):\omega_i \subset \Omega \, {\rm open},\ \omega_{i} \cap\omega_j=\emptyset\,\forall i \neq j \right\}.$$\end{document}While the existence of a quasi-open optimal partition (ω1,…,ωm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(\omega_1,\ldots, \omega_m)}$$\end{document} follows from a general result by Bucur, Buttazzo and Henrot [Adv Math Sci Appl 8(2):571–579, 1998], the aim of this paper is to associate with such minimal partitions and their eigenfunctions some suitable extremality conditions and to exploit them, proving as well the Lipschitz continuity of some eigenfunctions, and the regularity of the partition in the sense that the free boundary ∪i=1m∂ωi∩Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cup_{i=1}^m \partial \omega_{i} \cap \Omega}$$\end{document} is, up to a residual set, locally a C1,α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${C^{1,\alpha}}$$\end{document} hypersurface. This last result extends the ones in the paper by Caffarelli and Lin [J Sci Comput 31(1–2):5–18, 2007] to the case of higher eigenvalues.
引用
收藏
页码:363 / 443
页数:80
相关论文
共 50 条