An efficient and accurate numerical method for the fractional optimal control problems with fractional Laplacian and state constraint

被引:0
|
作者
Zhang, Jiaqi [1 ]
Yang, Yin [2 ,3 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Hunan Key Lab Computat & Simulat Sci & Engn, Key Lab Intelligent Comp & Informat Proc Minist Ed, Xiangtan, Hunan, Peoples R China
[2] Xiangtan Univ, Natl Ctr Appl Math Hunan, Sch Math & Computat Sci, Hunan Int Sci & Technol Innovat Cooperat Base Comp, Xiangtan, Hunan, Peoples R China
[3] Xiangtan Univ, Natl Ctr Appl Math Hunan, Sch Math & Computat Sci, Hunan Int Sci & Technol Innovat Cooperat Base Comp, Xiangtan 411105, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Caffarelli-Silvestre extension; enriched spectral Galerkin method; fractional Laplacian; Laguerre polynomials; optimal control problems; FINITE-ELEMENT APPROXIMATION; ERROR ANALYSIS; CONVERGENCE; EQUATIONS; FEM;
D O I
10.1002/num.23056
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the numerical approximation of an optimal control problem with fractional Laplacian and state constraint in integral form based on the Caffarelli-Silvestre expansion. The first order optimality conditions of the extended optimal control problem is obtained. An enriched spectral Galerkin discrete scheme for the extended problem based on weighted Laguerre polynomials is proposed. A priori error estimate for the enriched spectral discrete scheme is proved. Numerical experiments demonstrate the effectiveness of our method and validate the theoretical results.
引用
收藏
页码:4403 / 4420
页数:18
相关论文
共 50 条
  • [1] An Efficient and Accurate Numerical Method for the Spectral Fractional Laplacian Equation
    Sheng Chen
    Jie Shen
    Journal of Scientific Computing, 2020, 82
  • [2] An Efficient and Accurate Numerical Method for the Spectral Fractional Laplacian Equation
    Chen, Sheng
    Shen, Jie
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 82 (01)
  • [3] AN ACCURATE NUMERICAL TECHNIQUE FOR SOLVING FRACTIONAL OPTIMAL CONTROL PROBLEMS
    Bhrawy, A. H.
    Doha, E. H.
    Baleanu, D.
    Ezz-Eldien, S. S.
    Abdelkawy, M. A.
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2015, 16 (01): : 47 - 54
  • [4] A Numerical Method for Solving Fractional Optimal Control Problems
    Jahromi, A. R. Fakharzadeh
    Baneshi, Z.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2017, 41 (A2): : 439 - 443
  • [5] A Numerical Method for Solving Fractional Optimal Control Problems
    A. R. Fakharzadeh Jahromi
    Z. Baneshi
    Iranian Journal of Science and Technology, Transactions A: Science, 2017, 41 : 439 - 443
  • [6] NUMERICAL METHOD FOR SOLVING FRACTIONAL OPTIMAL CONTROL PROBLEMS
    Biswas, Raj Kumar
    Sen, Siddhartha
    PROCEEDINGS OF ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, VOL 4, PTS A-C, 2010, : 1205 - 1208
  • [7] Solving a class of fractional optimal control problems via a new efficient and accurate method
    Soradi-Zeid, Samaneh
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2021, 9 (02): : 480 - 492
  • [8] Spectral Galerkin Approximation of Fractional Optimal Control Problems with Fractional Laplacian
    Zhang, Jiaqi
    Yang, Yin
    Zhou, Zhaojie
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2023, 15 (06) : 1631 - 1654
  • [9] Finite element approximation of optimal control problem with integral fractional Laplacian and state constraint
    Zhou, Zhaojie
    Liu, Jie
    Chen, Yanping
    Wang, Qiming
    NUMERICAL ALGORITHMS, 2023, 94 (04) : 1983 - 2004
  • [10] Finite element approximation of optimal control problem with integral fractional Laplacian and state constraint
    Zhaojie Zhou
    Jie Liu
    Yanping Chen
    Qiming Wang
    Numerical Algorithms, 2023, 94 : 1983 - 2004