An efficient and accurate numerical method for the fractional optimal control problems with fractional Laplacian and state constraint

被引:0
|
作者
Zhang, Jiaqi [1 ]
Yang, Yin [2 ,3 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Hunan Key Lab Computat & Simulat Sci & Engn, Key Lab Intelligent Comp & Informat Proc Minist Ed, Xiangtan, Hunan, Peoples R China
[2] Xiangtan Univ, Natl Ctr Appl Math Hunan, Sch Math & Computat Sci, Hunan Int Sci & Technol Innovat Cooperat Base Comp, Xiangtan, Hunan, Peoples R China
[3] Xiangtan Univ, Natl Ctr Appl Math Hunan, Sch Math & Computat Sci, Hunan Int Sci & Technol Innovat Cooperat Base Comp, Xiangtan 411105, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Caffarelli-Silvestre extension; enriched spectral Galerkin method; fractional Laplacian; Laguerre polynomials; optimal control problems; FINITE-ELEMENT APPROXIMATION; ERROR ANALYSIS; CONVERGENCE; EQUATIONS; FEM;
D O I
10.1002/num.23056
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the numerical approximation of an optimal control problem with fractional Laplacian and state constraint in integral form based on the Caffarelli-Silvestre expansion. The first order optimality conditions of the extended optimal control problem is obtained. An enriched spectral Galerkin discrete scheme for the extended problem based on weighted Laguerre polynomials is proposed. A priori error estimate for the enriched spectral discrete scheme is proved. Numerical experiments demonstrate the effectiveness of our method and validate the theoretical results.
引用
收藏
页码:4403 / 4420
页数:18
相关论文
共 50 条
  • [31] Fractional truncated exponential method for linear fractional optimal control problems
    Ounamane, Said
    Sadek, Lakhlifa
    Abouzaid, Bouchra
    Sadek, El Mostafa
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2025, 232 : 408 - 426
  • [32] A Pseudospectral Method for Fractional Optimal Control Problems
    Ejlali, Nastaran
    Hosseini, Seyed Mohammad
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2017, 174 (01) : 83 - 107
  • [33] A Pseudospectral Method for Fractional Optimal Control Problems
    Nastaran Ejlali
    Seyed Mohammad Hosseini
    Journal of Optimization Theory and Applications, 2017, 174 : 83 - 107
  • [34] A numerical technique for solving fractional optimal control problems
    Lotfi, A.
    Dehghan, Mehdi
    Yousefi, S. A.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (03) : 1055 - 1067
  • [35] A formulation and numerical scheme for fractional optimal control problems
    Agrawal, Om P.
    JOURNAL OF VIBRATION AND CONTROL, 2008, 14 (9-10) : 1291 - 1299
  • [36] A Numerical Scheme for Generalized Fractional Optimal Control Problems
    Singha, N.
    Nahak, C.
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2016, 11 (02): : 798 - 814
  • [37] A quadratic numerical scheme for fractional optimal control problems
    Agrawal, Om P.
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2008, 130 (01): : 0110101 - 0110106
  • [38] A numerical approximation for delay fractional optimal control problems based on the method of moments
    Dehghan, Reza
    Keyanpour, Mohammad
    IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2017, 34 (01) : 77 - 92
  • [39] An efficient numerical method for the optimal control of fractional-order dynamic systems
    Mohammadzadeh, Ehsan
    Pariz, Naser
    Sani, Seyed Kamal Hosseini
    Jajarmi, Amin
    JOURNAL OF VIBRATION AND CONTROL, 2018, 24 (22) : 5312 - 5320
  • [40] Tensor product method for fast solution of optimal control problems with fractional multidimensional Laplacian in constraints
    Heidel, Gennadij
    Khoromskaia, Venera
    Khoromskij, Boris N.
    Schulz, Volker
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 424