An efficient and accurate numerical method for the fractional optimal control problems with fractional Laplacian and state constraint

被引:0
|
作者
Zhang, Jiaqi [1 ]
Yang, Yin [2 ,3 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Hunan Key Lab Computat & Simulat Sci & Engn, Key Lab Intelligent Comp & Informat Proc Minist Ed, Xiangtan, Hunan, Peoples R China
[2] Xiangtan Univ, Natl Ctr Appl Math Hunan, Sch Math & Computat Sci, Hunan Int Sci & Technol Innovat Cooperat Base Comp, Xiangtan, Hunan, Peoples R China
[3] Xiangtan Univ, Natl Ctr Appl Math Hunan, Sch Math & Computat Sci, Hunan Int Sci & Technol Innovat Cooperat Base Comp, Xiangtan 411105, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Caffarelli-Silvestre extension; enriched spectral Galerkin method; fractional Laplacian; Laguerre polynomials; optimal control problems; FINITE-ELEMENT APPROXIMATION; ERROR ANALYSIS; CONVERGENCE; EQUATIONS; FEM;
D O I
10.1002/num.23056
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the numerical approximation of an optimal control problem with fractional Laplacian and state constraint in integral form based on the Caffarelli-Silvestre expansion. The first order optimality conditions of the extended optimal control problem is obtained. An enriched spectral Galerkin discrete scheme for the extended problem based on weighted Laguerre polynomials is proposed. A priori error estimate for the enriched spectral discrete scheme is proved. Numerical experiments demonstrate the effectiveness of our method and validate the theoretical results.
引用
收藏
页码:4403 / 4420
页数:18
相关论文
共 50 条
  • [41] An efficient numerical scheme for solving fractional infinite-horizon optimal control problems
    Yavari, Mina
    Nazemi, Alireza
    ISA TRANSACTIONS, 2019, 94 : 108 - 118
  • [42] Fractional Optimal Control Problems with Several State and Control Variables
    Agrawal, Om P.
    Defterli, Ozlem
    Baleanu, Dumitru
    JOURNAL OF VIBRATION AND CONTROL, 2010, 16 (13) : 1967 - 1976
  • [43] Application of Conformable Fractional Differential Transform Method for Fractional Optimal Control Problems
    Chiranjeevi, Tirumalasetty
    Biswas, Raj Kumar
    IFAC PAPERSONLINE, 2022, 55 (01): : 643 - 648
  • [44] A novel and accurate finite difference method for the fractional Laplacian and the fractional Poisson problem
    Duo, Siwei
    van Wyk, Hans Werner
    Zhang, Yanzhi
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 355 : 233 - 252
  • [45] A discrete method to solve fractional optimal control problems
    Ricardo Almeida
    Delfim F. M. Torres
    Nonlinear Dynamics, 2015, 80 : 1811 - 1816
  • [46] Wavelets method for solving fractional optimal control problems
    Heydari, M. H.
    Hooshmandasl, M. R.
    Ghaini, F. M. Maalek
    Cattani, C.
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 286 : 139 - 154
  • [47] A discrete method to solve fractional optimal control problems
    Almeida, Ricardo
    Torres, Delfim F. M.
    NONLINEAR DYNAMICS, 2015, 80 (04) : 1811 - 1816
  • [48] Numerical Solution of Some Types of Fractional Optimal Control Problems
    Sweilam, Nasser Hassan
    Al-Ajami, Tamer Mostafa
    Hoppe, Ronald H. W.
    SCIENTIFIC WORLD JOURNAL, 2013,
  • [49] Fractional optimal control problems: optimality conditions and numerical solution
    Sayevand, Khosro
    Rostami, Mohammadreza
    IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2018, 35 (01) : 123 - 148
  • [50] Numerical solution for fractional optimal control problems by Hermite polynomials
    Yari, Ayatollah
    JOURNAL OF VIBRATION AND CONTROL, 2020, 27 (5-6) : 698 - 716