The Faddeev–Mickelsson–Shatashvili Anomaly and Lifting Bundle Gerbes

被引:0
|
作者
Pedram Hekmati
Michael K. Murray
Danny Stevenson
Raymond F. Vozzo
机构
[1] University of Adelaide,School of Mathematical Sciences
[2] University of Glasgow,School of Mathematics and Statistics
来源
关键词
Gauge Group; Line Bundle; Dirac Operator; Central Extension; Projective Bundle;
D O I
暂无
中图分类号
学科分类号
摘要
In gauge theory, the Faddeev–Mickelsson–Shatashvili anomaly arises as a prolongation problem for the action of the gauge group on a bundle of projective Fock spaces. In this paper, we study this anomaly from the point of view of bundle gerbes and give several equivalent descriptions of the obstruction. These include lifting bundle gerbes with non-trivial structure group bundle and bundle gerbes related to the caloron correspondence.
引用
收藏
页码:379 / 393
页数:14
相关论文
共 50 条
  • [31] CHERN-SIMONS FORMS, MICKELSSON-FADDEEV ALGEBRAS AND THE P-BRANES
    DIXON, JA
    DUFF, MJ
    PHYSICS LETTERS B, 1992, 296 (1-2) : 28 - 32
  • [32] Fluxes, bundle gerbes and 2-Hilbert spaces
    Severin Bunk
    Richard J. Szabo
    Letters in Mathematical Physics, 2017, 107 : 1877 - 1918
  • [34] Nonabelian Bundle Gerbes, Their Differential Geometry and Gauge Theory
    Paolo Aschieri
    Luigi Cantini
    Branislav Jurčo
    Communications in Mathematical Physics, 2005, 254 : 367 - 400
  • [35] Nonabelian bundle gerbes, their differential geometry and gauge theory
    Aschieri, P
    Cantini, L
    Jurco, B
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 254 (02) : 367 - 400
  • [36] Higher bundle gerbes and cohomology classes in gauge theories
    Carey, AL
    Murray, MK
    Wang, BL
    JOURNAL OF GEOMETRY AND PHYSICS, 1997, 21 (02) : 183 - 197
  • [37] Fluxes, bundle gerbes and 2-Hilbert spaces
    Bunk, Severin
    Szabo, Richard J.
    LETTERS IN MATHEMATICAL PHYSICS, 2017, 107 (10) : 1877 - 1918
  • [38] Smooth 2-Group Extensions and Symmetries of Bundle Gerbes
    Severin Bunk
    Lukas Müller
    Richard J. Szabo
    Communications in Mathematical Physics, 2021, 384 : 1829 - 1911
  • [39] A relation on spin bundle gerbes and Mayer's Dirac operators
    Tomoda, A
    Noncommutative Geometry and Physics, 2005, : 369 - 378
  • [40] Real bundle gerbes, orientifolds and twisted KR-homology
    Hekmati, Pedram
    Murray, Michael K.
    Szabo, Richard J.
    Vozzo, Raymond F.
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2019, 23 (08) : 2093 - 2159