Fluxes, bundle gerbes and 2-Hilbert spaces

被引:0
|
作者
Severin Bunk
Richard J. Szabo
机构
[1] Heriot-Watt University,Department of Mathematics, Maxwell Institute for Mathematical Sciences
[2] Heriot-Watt University,Department of Mathematics, Maxwell Institute for Mathematical Sciences, The Higgs Centre for Theoretical Physics
来源
关键词
Bundle gerbes; Higher geometric quantisation; Fluxes in string and M-theory; Higher geometric structures; 81S10; 53Z05; 18F99;
D O I
暂无
中图分类号
学科分类号
摘要
We elaborate on the construction of a prequantum 2-Hilbert space from a bundle gerbe over a 2-plectic manifold, providing the first steps in a programme of higher geometric quantisation of closed strings in flux compactifications and of M5-branes in C-fields. We review in detail the construction of the 2-category of bundle gerbes and introduce the higher geometrical structures necessary to turn their categories of sections into 2-Hilbert spaces. We work out several explicit examples of 2-Hilbert spaces in the context of closed strings and M5-branes on flat space. We also work out the prequantum 2-Hilbert space associated with an M-theory lift of closed strings described by an asymmetric cyclic orbifold of the SU(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {S}\mathsf {U}(2)$$\end{document} WZW model, providing an example of sections of a torsion gerbe on a curved background. We describe the dimensional reduction of M-theory to string theory in these settings as a map from 2-isomorphism classes of sections of bundle gerbes to sections of corresponding line bundles, which is compatible with the respective monoidal structures and module actions.
引用
收藏
页码:1877 / 1918
页数:41
相关论文
共 50 条
  • [1] Fluxes, bundle gerbes and 2-Hilbert spaces
    Bunk, Severin
    Szabo, Richard J.
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2017, 107 (10) : 1877 - 1918
  • [2] The 2-Hilbert space of a prequantum bundle gerbe
    Bunk, Severin
    Saemann, Christian
    Szabo, Richard J.
    [J]. REVIEWS IN MATHEMATICAL PHYSICS, 2018, 30 (01)
  • [3] Bundle gerbes and moduli spaces
    Bouwknegt, Peter
    Mathai, Varghese
    Wu, Siye
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2012, 62 (01) : 1 - 10
  • [4] Higher-dimensional algebra .2. 2-Hilbert spaces
    Baez, JC
    [J]. ADVANCES IN MATHEMATICS, 1997, 127 (02) : 125 - 189
  • [5] Bundle 2-gerbes
    Stevenson, D
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2004, 88 : 405 - 435
  • [6] 2-HILBERT SPACE SCATTERING THEOREM
    LYFORD, WC
    [J]. MATHEMATISCHE ANNALEN, 1975, 217 (03) : 257 - 261
  • [7] NONABELIAN BUNDLE 2-GERBES
    Jurco, Branislav
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2011, 8 (01) : 49 - 78
  • [8] Bundle Gerbes
    Murray, MK
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1996, 54 : 403 - 416
  • [9] 2-HILBERT C*-MODULES AND SOME GRUSS' TYPE INEQUALITIES IN A-2-INNER PRODUCT SPACES
    Mahchari, Tabandeh Mehdiabad
    Nazari, Akbar
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2015, 18 (02): : 721 - 734
  • [10] Geometry and 2-Hilbert space for nonassociative magnetic translations
    Severin Bunk
    Lukas Müller
    Richard J. Szabo
    [J]. Letters in Mathematical Physics, 2019, 109 : 1827 - 1866