The Faddeev–Mickelsson–Shatashvili Anomaly and Lifting Bundle Gerbes

被引:0
|
作者
Pedram Hekmati
Michael K. Murray
Danny Stevenson
Raymond F. Vozzo
机构
[1] University of Adelaide,School of Mathematical Sciences
[2] University of Glasgow,School of Mathematics and Statistics
来源
关键词
Gauge Group; Line Bundle; Dirac Operator; Central Extension; Projective Bundle;
D O I
暂无
中图分类号
学科分类号
摘要
In gauge theory, the Faddeev–Mickelsson–Shatashvili anomaly arises as a prolongation problem for the action of the gauge group on a bundle of projective Fock spaces. In this paper, we study this anomaly from the point of view of bundle gerbes and give several equivalent descriptions of the obstruction. These include lifting bundle gerbes with non-trivial structure group bundle and bundle gerbes related to the caloron correspondence.
引用
收藏
页码:379 / 393
页数:14
相关论文
共 50 条
  • [41] Smooth 2-Group Extensions and Symmetries of Bundle Gerbes
    Bunk, Severin
    Mueller, Lukas
    Szabo, Richard J.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 384 (03) : 1829 - 1911
  • [42] Lifting distributions to the cotangent bundle
    Mikulski, Wlodzimierz M.
    ANNALES POLONICI MATHEMATICI, 2008, 93 (03) : 211 - 215
  • [43] Twisted K-theory and K-theory of bundle gerbes
    Bouwknegt, P
    Carey, AL
    Mathai, V
    Murray, MK
    Stevenson, D
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 228 (01) : 17 - 45
  • [44] Twisted K-Theory and K-Theory of Bundle Gerbes
    Peter Bouwknegt
    Alan L. Carey
    Varghese Mathai
    Michael K. Murray
    Danny Stevenson
    Communications in Mathematical Physics, 2002, 228 : 17 - 49
  • [45] CROSSED MODULE BUNDLE GERBES; CLASSIFICATION, STRING GROUP AND DIFFERENTIAL GEOMETRY
    Jurco, Branislav
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2011, 8 (05) : 1079 - 1095
  • [46] DOES FADDEEV ANOMALY EXIST IN GAUSS LAW CONSTRAINTS
    KOBAYASHI, M
    SUGAMOTO, A
    PHYSICS LETTERS B, 1985, 159 (4-6) : 315 - 320
  • [48] Bundle gerbes for Chern-Simons and Wess-Zumino-Witten theories
    Carey, AL
    Johnson, S
    Murray, MK
    Stevenson, D
    Wang, BL
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 259 (03) : 577 - 613
  • [49] Bundle Gerbes for Chern-Simons and Wess-Zumino-Witten Theories
    Alan L. Carey
    Stuart Johnson
    Michael K. Murray
    Danny Stevenson
    Bai-Ling Wang
    Communications in Mathematical Physics, 2005, 259 : 577 - 613
  • [50] LIFTING THEOREM CONCERNING DISTALITY ON A FIBRE BUNDLE
    Panda, S.
    Bhattacharyya, A.
    De, T.
    JOURNAL OF DYNAMICAL SYSTEMS AND GEOMETRIC THEORIES, 2014, 12 (02) : 117 - 130