A relation on spin bundle gerbes and Mayer's Dirac operators

被引:0
|
作者
Tomoda, A [1 ]
机构
[1] Keio Univ, Dept Math, Kohoku Ku, Yokohama, Kanagawa 223, Japan
关键词
D O I
10.1142/9789812775061_0021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Exploiting the notion of bundle gerbe due to Murray, Murray and Singer constructed a generalization of Dirac operators for possibly non-spin manifolds. We shall provide an alternative proof for their index formula, and clarify the relation between a generalized Dirac operators due to Mayer and their operators. Furthermore, we determine the twisted Chern character of some bundle gerbe modules.
引用
收藏
页码:369 / 378
页数:10
相关论文
共 50 条
  • [1] Faddeev's anomaly and bundle gerbes
    Carey, AL
    Murray, MK
    LETTERS IN MATHEMATICAL PHYSICS, 1996, 37 (01) : 29 - 36
  • [2] On the Dirac and Spin-Dirac Operators
    E. A. Notte-Cuello
    Advances in Applied Clifford Algebras, 2010, 20 : 765 - 780
  • [3] On the Dirac and Spin-Dirac Operators
    Notte-Cuello, E. A.
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2010, 20 (3-4) : 765 - 780
  • [4] Twisted Higher Spin Dirac Operators
    H. De Schepper
    D. Eelbode
    T. Raeymaekers
    Complex Analysis and Operator Theory, 2014, 8 : 429 - 447
  • [5] Dirac Operators on Hermitian Spin Surfaces
    B. Alexandrov
    S. Ivanov
    Annals of Global Analysis and Geometry, 2000, 18 : 529 - 539
  • [6] SPIN CONNECTION IN TERMS OF DIRAC OPERATORS
    LOOS, HG
    NUOVO CIMENTO, 1963, 30 (03): : 901 - +
  • [7] Twisted Higher Spin Dirac Operators
    De Schepper, H.
    Eelbode, D.
    Raeymaekers, T.
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2014, 8 (02) : 429 - 447
  • [8] Dirac operators on Hermitian spin surfaces
    Alexandrov, B
    Ivanov, S
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2000, 18 (06) : 529 - 539
  • [9] CURVATURE BUNDLE MORPHISMS FOR HYPERSURFACE GENERALIZED DIRAC OPERATORS
    Anghel, N.
    HOUSTON JOURNAL OF MATHEMATICS, 2016, 42 (01): : 123 - 142
  • [10] A toy model for higher spin Dirac operators
    D. Eelbode
    L. Van de Voorde
    Physics of Atomic Nuclei, 2010, 73 : 282 - 287