CURVATURE BUNDLE MORPHISMS FOR HYPERSURFACE GENERALIZED DIRAC OPERATORS

被引:0
|
作者
Anghel, N. [1 ]
机构
[1] Univ N Texas, Dept Math, Denton, TX 76203 USA
来源
HOUSTON JOURNAL OF MATHEMATICS | 2016年 / 42卷 / 01期
关键词
Hypersurface; Dirac bundle; Clifford multiplication; Compatible connection; Spin-type bundle; Clifford-type bundle; Generalized Dirac operator; Curvature bundle morphism; EIGENVALUES; MANIFOLDS; SPACES; BOUNDS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The datum of a generalized Dirac operator (D) over bar (in the sense of Gromov and Lawson) on a Riemannian manifold (M) over bar can be restricted to a hypersurface M subset of (K) over bar, then suitably altered via a bundle morphism-valued one-form Omega on M, commuting with Clifford multiplication, to yield a generalized Dirac operator D on M. How do the curvature bundle morphisms (R) over bar (vertical bar M) and R associated to (D) over bar and D relate? The Gauss-like relationship we are going to establish in this paper involves the shape operator A of M, a normal part of the curvature associated to the connection of (D) over bar, and the curvature of the form Omega. Applications are then given to operators of Spin and Clifford type.
引用
收藏
页码:123 / 142
页数:20
相关论文
共 50 条