CURVATURE BUNDLE MORPHISMS FOR HYPERSURFACE GENERALIZED DIRAC OPERATORS

被引:0
|
作者
Anghel, N. [1 ]
机构
[1] Univ N Texas, Dept Math, Denton, TX 76203 USA
来源
HOUSTON JOURNAL OF MATHEMATICS | 2016年 / 42卷 / 01期
关键词
Hypersurface; Dirac bundle; Clifford multiplication; Compatible connection; Spin-type bundle; Clifford-type bundle; Generalized Dirac operator; Curvature bundle morphism; EIGENVALUES; MANIFOLDS; SPACES; BOUNDS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The datum of a generalized Dirac operator (D) over bar (in the sense of Gromov and Lawson) on a Riemannian manifold (M) over bar can be restricted to a hypersurface M subset of (K) over bar, then suitably altered via a bundle morphism-valued one-form Omega on M, commuting with Clifford multiplication, to yield a generalized Dirac operator D on M. How do the curvature bundle morphisms (R) over bar (vertical bar M) and R associated to (D) over bar and D relate? The Gauss-like relationship we are going to establish in this paper involves the shape operator A of M, a normal part of the curvature associated to the connection of (D) over bar, and the curvature of the form Omega. Applications are then given to operators of Spin and Clifford type.
引用
收藏
页码:123 / 142
页数:20
相关论文
共 50 条
  • [31] Index theory for generalized dirac operators on open manifolds
    Eichhorn, Juergen
    C(star)-Algebras and Elliptic Theory, 2006, : 73 - 128
  • [32] On the Ricci curvature of a hypersurface in a sphere
    Erdogan, M
    MATHEMATICA SCANDINAVICA, 1998, 82 (02) : 186 - 190
  • [33] Generalized Lagrangian mean curvature flows: The cotangent bundle case
    Smoczyk, Knut
    Tsui, Mao-Pei
    Wang, Mu-Tao
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2019, 750 : 97 - 121
  • [34] Stability of the Generalized Lagrangian Mean Curvature Flow in Cotangent Bundle
    Jin, Xishen
    Liu, Jiawei
    ANNALS OF PDE, 2024, 10 (02)
  • [35] CURVATURE CONTRIBUTION TO THE ESSENTIAL SPECTRUM OF DIRAC OPERATORS WITH CRITICAL SHELL INTERACTIONS
    Benhellal, Badreddine
    Pankrashkin, Konstantin
    PURE AND APPLIED ANALYSIS, 2024, 6 (01):
  • [36] Hypersurface Bohm-Dirac models
    Durr, Detlef
    Goldstein, Sheldon
    Munch-Berndl, Karin
    Zanghi, Nino
    Physical Review A. Atomic, Molecular, and Optical Physics, 1999, 60 (04):
  • [37] On the Tangent Bundle of a Hypersurface in a Riemannian Manifold
    Zhonghua HOU
    Lei SUN
    ChineseAnnalsofMathematics(SeriesB), 2015, 36 (04) : 579 - 602
  • [38] Hypersurface Bohm-Dirac models
    Dürr, D
    Goldstein, S
    Münch-Berndl, K
    Zanghì, N
    PHYSICAL REVIEW A, 1999, 60 (04): : 2729 - 2736
  • [40] The Existence of Cauchy Kernels of Kravchenko-Generalized Dirac Operators
    Doan Cong Dinh
    Advances in Applied Clifford Algebras, 2021, 31