Extremality of Graph Entropy Based on Degrees of Uniform Hypergraphs with Few Edges

被引:0
|
作者
Dan Hu
Xue Liang Li
Xiao Gang Liu
Sheng Gui Zhang
机构
[1] Northwestern Polytechnical University,Department of Applied Mathematics
[2] Nankai University,Center for Combinatorics
[3] Northwestern Polytechnical University,Xi’an
关键词
Shannon’s entropy; graph entropy; degree sequence; hypergraph; 05C50; 15A18;
D O I
暂无
中图分类号
学科分类号
摘要
Let H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}$$\end{document} be a hypergraph with n vertices. Suppose that d1,d2,…,dn are degrees of the vertices of H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}$$\end{document}. The t-th graph entropy based on degrees ofH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}$$\end{document} is defined as Idt(H)=−∑i=1n(dit∑j=1ndjtlogdit∑j=1ndjt)=log(∑i=1ndit)−∑i=1n(dit∑j=1ndjtlogdit),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_{d}^{t}(\mathcal{H})=-\sum\limits_{i=1}^{n}\left(\frac{d_{i}^{t}}{\sum\nolimits_{j=1}^{n}d_{j}^{t}}\log \frac{d_{i}^{t}}{\sum\nolimits_{j=1}^{n}d_{j}^{t}}\right)=\log\left(\sum\limits_{i=1}^{n}d_{i}^{t}\right)-\sum\limits_{i=1}^{n}\left(\frac{d_{i}^{t}}{\sum\nolimits_{j=1}^{n}d_{j}^{t}}\log d_{i}^{t}\right),$$\end{document} where t is a real number and the logarithm is taken to the base two. In this paper we obtain upper and lower bounds of Idt(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_{d}^{t}(\mathcal{H})$$\end{document} for t = 1, when H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}$$\end{document} is among all uniform supertrees, unicyclic uniform hypergraphs and bicyclic uniform hypergraphs, respectively.
引用
收藏
页码:1238 / 1250
页数:12
相关论文
共 50 条
  • [1] Extremality of Graph Entropy Based on Degrees of Uniform Hypergraphs with Few Edges
    Dan HU
    Xue Liang LI
    Xiao Gang LIU
    Sheng Gui ZHANG
    Acta Mathematica Sinica,English Series, 2019, 35 (07) : 1238 - 1250
  • [2] Extremality of Graph Entropy Based on Degrees of Uniform Hypergraphs with Few Edges
    Hu, Dan
    Li, Xue Liang
    Liu, Xiao Gang
    Zhang, Sheng Gui
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2019, 35 (07) : 1238 - 1250
  • [3] Extremality of Graph Entropy Based on Degrees of Uniform Hypergraphs with Few Edges
    Dan HU
    Xue Liang LI
    Xiao Gang LIU
    Sheng Gui ZHANG
    Acta Mathematica Sinica, 2019, 35 (07) : 1238 - 1250
  • [4] Coloring Uniform Hypergraphs With Few Edges
    Kostochka, A. V.
    Kumbhat, M.
    RANDOM STRUCTURES & ALGORITHMS, 2009, 35 (03) : 348 - 368
  • [5] Graph Entropy Based on Strong Coloring of Uniform Hypergraphs
    Fang, Lusheng
    Deng, Bo
    Zhao, Haixing
    Lv, Xiaoyun
    AXIOMS, 2022, 11 (01)
  • [6] MAXIMIZING SPECTRAL RADII OF UNIFORM HYPERGRAPHS WITH FEW EDGES
    Fan, Yi-Zheng
    Tan, Ying-Ying
    Peng, Xi-Xi
    Liu, An-Hong
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2016, 36 (04) : 845 - 856
  • [7] Conflict-Free Colourings of Uniform Hypergraphs With Few Edges
    Kostochka, A.
    Kumbhat, M.
    Luczak, T.
    COMBINATORICS PROBABILITY & COMPUTING, 2012, 21 (04): : 611 - 622
  • [8] Equitable colorings of hypergraphs with few edges
    Akhmejanova, Margarita B.
    Shabanov, Dmitry A.
    DISCRETE APPLIED MATHEMATICS, 2020, 276 : 2 - 12
  • [9] Decomposing uniform hypergraphs into uniform hypertrees and single edges
    Kang, Liying
    Ni, Zhenyu
    Shan, Erfang
    DISCRETE MATHEMATICS, 2021, 344 (08)
  • [10] Tensor Entropy for Uniform Hypergraphs
    Chen, Can
    Rajapakse, Indika
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2020, 7 (04): : 2889 - 2900