Extremality of Graph Entropy Based on Degrees of Uniform Hypergraphs with Few Edges

被引:0
|
作者
Dan Hu
Xue Liang Li
Xiao Gang Liu
Sheng Gui Zhang
机构
[1] Northwestern Polytechnical University,Department of Applied Mathematics
[2] Nankai University,Center for Combinatorics
[3] Northwestern Polytechnical University,Xi’an
关键词
Shannon’s entropy; graph entropy; degree sequence; hypergraph; 05C50; 15A18;
D O I
暂无
中图分类号
学科分类号
摘要
Let H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}$$\end{document} be a hypergraph with n vertices. Suppose that d1,d2,…,dn are degrees of the vertices of H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}$$\end{document}. The t-th graph entropy based on degrees ofH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}$$\end{document} is defined as Idt(H)=−∑i=1n(dit∑j=1ndjtlogdit∑j=1ndjt)=log(∑i=1ndit)−∑i=1n(dit∑j=1ndjtlogdit),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_{d}^{t}(\mathcal{H})=-\sum\limits_{i=1}^{n}\left(\frac{d_{i}^{t}}{\sum\nolimits_{j=1}^{n}d_{j}^{t}}\log \frac{d_{i}^{t}}{\sum\nolimits_{j=1}^{n}d_{j}^{t}}\right)=\log\left(\sum\limits_{i=1}^{n}d_{i}^{t}\right)-\sum\limits_{i=1}^{n}\left(\frac{d_{i}^{t}}{\sum\nolimits_{j=1}^{n}d_{j}^{t}}\log d_{i}^{t}\right),$$\end{document} where t is a real number and the logarithm is taken to the base two. In this paper we obtain upper and lower bounds of Idt(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_{d}^{t}(\mathcal{H})$$\end{document} for t = 1, when H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}$$\end{document} is among all uniform supertrees, unicyclic uniform hypergraphs and bicyclic uniform hypergraphs, respectively.
引用
收藏
页码:1238 / 1250
页数:12
相关论文
共 50 条
  • [31] The effect on the adjacency and signless Laplacian spectral radii of uniform hypergraphs by grafting edges
    Xiao, Peng
    Wang, Ligong
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 610 (610) : 591 - 607
  • [32] A Note on Extremality of the First Degree-Based Entropy
    Yang, Yuhong
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2022, 87 (01) : 125 - 131
  • [33] Sharp lower bounds for the spectral radius of uniform hypergraphs concerning degrees
    Kang, Liying
    Liu, Lele
    Shan, Erfang
    ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (02):
  • [34] On Graph-Lagrangians and Clique Numbers of 3-Uniform Hypergraphs
    Yan Ping SUN
    Yue Jian PENG
    Biao WU
    ActaMathematicaSinica, 2016, 32 (08) : 943 - 960
  • [35] On Graph-Lagrangians and Clique Numbers of 3-Uniform Hypergraphs
    Yan Ping SUN
    Yue Jian PENG
    Biao WU
    Acta Mathematica Sinica,English Series, 2016, (08) : 943 - 960
  • [36] On Graph-Lagrangians and clique numbers of 3-uniform hypergraphs
    Sun, Yan Ping
    Peng, Yue Jian
    Wu, Biao
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2016, 32 (08) : 943 - 960
  • [37] On Graph-Lagrangians and clique numbers of 3-uniform hypergraphs
    Yan Ping Sun
    Yue Jian Peng
    Biao Wu
    Acta Mathematica Sinica, English Series, 2016, 32 : 943 - 960
  • [38] Minimum Degrees and Codegrees of Ramsey-Minimal 3-Uniform Hypergraphs
    Clemens, Dennis
    Person, Yury
    COMBINATORICS PROBABILITY & COMPUTING, 2016, 25 (06): : 850 - 869
  • [39] Few Edges are Enough: Few-Shot Network Attack Detection with Graph Neural Networks
    Bilot, Tristan
    El Madhoun, Nour
    Al Agha, Khaldoun
    Zouaoui, Anis
    ADVANCES IN INFORMATION AND COMPUTER SECURITY, IWSEC 2024, 2024, 14977 : 257 - 276
  • [40] On the eccentricity-based invariants of uniform hypergraphs
    Wang, Hongzhuan
    Yin, Piaoyang
    FILOMAT, 2024, 38 (01) : 325 - 342