Extremality of Graph Entropy Based on Degrees of Uniform Hypergraphs with Few Edges

被引:0
|
作者
Dan Hu
Xue Liang Li
Xiao Gang Liu
Sheng Gui Zhang
机构
[1] Northwestern Polytechnical University,Department of Applied Mathematics
[2] Nankai University,Center for Combinatorics
[3] Northwestern Polytechnical University,Xi’an
关键词
Shannon’s entropy; graph entropy; degree sequence; hypergraph; 05C50; 15A18;
D O I
暂无
中图分类号
学科分类号
摘要
Let H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}$$\end{document} be a hypergraph with n vertices. Suppose that d1,d2,…,dn are degrees of the vertices of H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}$$\end{document}. The t-th graph entropy based on degrees ofH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}$$\end{document} is defined as Idt(H)=−∑i=1n(dit∑j=1ndjtlogdit∑j=1ndjt)=log(∑i=1ndit)−∑i=1n(dit∑j=1ndjtlogdit),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_{d}^{t}(\mathcal{H})=-\sum\limits_{i=1}^{n}\left(\frac{d_{i}^{t}}{\sum\nolimits_{j=1}^{n}d_{j}^{t}}\log \frac{d_{i}^{t}}{\sum\nolimits_{j=1}^{n}d_{j}^{t}}\right)=\log\left(\sum\limits_{i=1}^{n}d_{i}^{t}\right)-\sum\limits_{i=1}^{n}\left(\frac{d_{i}^{t}}{\sum\nolimits_{j=1}^{n}d_{j}^{t}}\log d_{i}^{t}\right),$$\end{document} where t is a real number and the logarithm is taken to the base two. In this paper we obtain upper and lower bounds of Idt(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_{d}^{t}(\mathcal{H})$$\end{document} for t = 1, when H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}$$\end{document} is among all uniform supertrees, unicyclic uniform hypergraphs and bicyclic uniform hypergraphs, respectively.
引用
收藏
页码:1238 / 1250
页数:12
相关论文
共 50 条
  • [41] The Maximum Lagrangian of 5-uniform Hypergraphs without Containing Two Edges Intersecting at a Vertex
    Biao WU
    Yue Jian PENG
    Acta Mathematica Sinica,English Series, 2022, (05) : 877 - 889
  • [42] Uplifting edges in higher-order networks: Spectral centralities for non-uniform hypergraphs
    Contreras-Aso, Gonzalo
    Perez-Corral, Cristian
    Romance, Miguel
    AIMS MATHEMATICS, 2024, 9 (11): : 32045 - 32075
  • [43] A note on the least number of edges of 3-uniform hypergraphs with upper chromatic number 2
    Diao, KF
    Liu, GZ
    Rautenbach, D
    Zhao, P
    DISCRETE MATHEMATICS, 2006, 306 (07) : 670 - 672
  • [44] The Maximum Lagrangian of 5-uniform Hypergraphs without Containing Two Edges Intersecting at a Vertex
    Wu, Biao
    Peng, Yue Jian
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2022, 38 (05) : 877 - 889
  • [45] The Maximum Lagrangian of 5-uniform Hypergraphs without Containing Two Edges Intersecting at a Vertex
    Biao Wu
    Yue Jian Peng
    Acta Mathematica Sinica, English Series, 2022, 38 : 877 - 889
  • [46] On the number of trees having k edges in common with a graph of bounded degrees
    Tomescu, I
    DISCRETE MATHEMATICS, 1997, 169 (1-3) : 283 - 286
  • [47] First and Second Order Signatures of Extreme Uniform Hypergraphs and Their Relationship with Vectors of the Vertex Degrees
    T. Yu. Goltsova
    E. K. Egorova
    V. Yu. Leonov
    A. V. Mokryakov
    Journal of Computer and Systems Sciences International, 2023, 62 : 675 - 688
  • [48] First and Second Order Signatures of Extreme Uniform Hypergraphs and Their Relationship with Vectors of the Vertex Degrees
    Goltsova, T. Yu.
    Egorova, E. K.
    Leonov, V. Yu.
    Mokryakov, A. V.
    JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL, 2023, 62 (04) : 675 - 688
  • [49] NEARLY UNIFORM-DISTRIBUTION OF EDGES AMONG K-SUBGRAPHS OF A GRAPH
    SIRAN, J
    TUZA, Z
    JOURNAL OF GRAPH THEORY, 1992, 16 (06) : 591 - 604
  • [50] Dynamic Graph-Based Feature Learning With Few Edges Considering Noisy Samples for Rotating Machinery Fault Diagnosis
    Zhou, Kaibo
    Yang, Chaoying
    Liu, Jie
    Xu, Qi
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2022, 69 (10) : 10595 - 10604