Extremality of Graph Entropy Based on Degrees of Uniform Hypergraphs with Few Edges

被引:0
|
作者
Dan Hu
Xue Liang Li
Xiao Gang Liu
Sheng Gui Zhang
机构
[1] Northwestern Polytechnical University,Department of Applied Mathematics
[2] Nankai University,Center for Combinatorics
[3] Northwestern Polytechnical University,Xi’an
关键词
Shannon’s entropy; graph entropy; degree sequence; hypergraph; 05C50; 15A18;
D O I
暂无
中图分类号
学科分类号
摘要
Let H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}$$\end{document} be a hypergraph with n vertices. Suppose that d1,d2,…,dn are degrees of the vertices of H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}$$\end{document}. The t-th graph entropy based on degrees ofH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}$$\end{document} is defined as Idt(H)=−∑i=1n(dit∑j=1ndjtlogdit∑j=1ndjt)=log(∑i=1ndit)−∑i=1n(dit∑j=1ndjtlogdit),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_{d}^{t}(\mathcal{H})=-\sum\limits_{i=1}^{n}\left(\frac{d_{i}^{t}}{\sum\nolimits_{j=1}^{n}d_{j}^{t}}\log \frac{d_{i}^{t}}{\sum\nolimits_{j=1}^{n}d_{j}^{t}}\right)=\log\left(\sum\limits_{i=1}^{n}d_{i}^{t}\right)-\sum\limits_{i=1}^{n}\left(\frac{d_{i}^{t}}{\sum\nolimits_{j=1}^{n}d_{j}^{t}}\log d_{i}^{t}\right),$$\end{document} where t is a real number and the logarithm is taken to the base two. In this paper we obtain upper and lower bounds of Idt(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_{d}^{t}(\mathcal{H})$$\end{document} for t = 1, when H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{H}$$\end{document} is among all uniform supertrees, unicyclic uniform hypergraphs and bicyclic uniform hypergraphs, respectively.
引用
收藏
页码:1238 / 1250
页数:12
相关论文
共 50 条
  • [21] Color-critical graphs and hypergraphs with few edges and no short cycles
    Abbott, HL
    Hare, DR
    Zhou, B
    DISCRETE MATHEMATICS, 1998, 182 (1-3) : 3 - 11
  • [22] The maximum spectral radius of uniform hypergraphs with given number of pendant edges
    Xiao, Peng
    Wang, Ligong
    LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (07): : 1392 - 1403
  • [23] Enumerating sparse uniform hypergraphs with given degree sequence and forbidden edges
    Aldosari, Haya S.
    Greenhill, Catherine
    EUROPEAN JOURNAL OF COMBINATORICS, 2019, 77 : 68 - 77
  • [24] Big Ramsey Degrees of 3-Uniform Hypergraphs are Finite
    Balko, Martin
    Chodounsky, David
    Hubicka, Jan
    Konecny, Matej
    Vena, Lluis
    COMBINATORICA, 2022, 42 (05) : 659 - 672
  • [25] Extremality of degree-based graph entropies
    Cao, Shujuan
    Dehmer, Matthias
    Shi, Yongtang
    INFORMATION SCIENCES, 2014, 278 : 22 - 33
  • [26] The α-spectral radius of uniform hypergraphs concerning degrees and domination number
    Wang, Qiannan
    Kang, Liying
    Shan, Erfang
    Liang, Zuosong
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2019, 38 (04) : 1128 - 1142
  • [27] Asymptotic enumeration of sparse uniform linear hypergraphs with given degrees
    Blinovsky, Vladimir
    Greenhill, Catherine
    ELECTRONIC JOURNAL OF COMBINATORICS, 2016, 23 (03):
  • [28] Big Ramsey Degrees of 3-Uniform Hypergraphs Are Finite
    Martin Balko
    David Chodounský
    Jan Hubička
    Matěj Konečný
    Lluis Vena
    Combinatorica, 2022, 42 : 659 - 672
  • [29] EXTENSIONS OF GALLAI GRAPH COVERING-THEOREMS FOR UNIFORM HYPERGRAPHS
    TUZA, Z
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1991, 52 (01) : 92 - 96
  • [30] On Decompositions of Complete 3-Uniform Hypergraphs into a Linear Forest with 4 Edges
    Bunge, Ryan C.
    Dawson, Erin
    Donovan, Mary
    Hatzer, Cody
    Maass, Jacquelyn
    COMBINATORICS, GRAPH THEORY AND COMPUTING, SEICCGTC 2021, 2024, 448 : 333 - 354