Decomposing uniform hypergraphs into uniform hypertrees and single edges

被引:0
|
作者
Kang, Liying [1 ]
Ni, Zhenyu [1 ]
Shan, Erfang [2 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
[2] Shanghai Univ, Sch Management, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
Hypergraph; Hypertree; Decomposition; MINIMUM H-DECOMPOSITIONS; GRAPHS;
D O I
10.1016/j.disc.2021.112454
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given two r-uniform hypergraphs G and H, an H-decomposition of G is a partition of the edge set of G such that each part is either a single edge or forms a hypergraph isomorphic to H. Let phi(r)(n, H) be the smallest integer such that any r-uniform hypergraph G of order n admits an H-decomposition with at most phi(r)(n, H) parts. In this paper we determine the exact value of phi(r)(n, H) when H is an arbitrary r-uniform hypertree with t edges. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Decomposing Hypergraphs into Simple Hypertrees
    Raphael Yuster
    Combinatorica, 2000, 20 : 119 - 140
  • [2] The average number of spanning hypertrees in sparse uniform hypergraphs
    Aldosari, Haya S.
    Greenhill, Catherine
    DISCRETE MATHEMATICS, 2021, 344 (01)
  • [3] Decomposing hypergraphs into simple hypertrees
    Yuster, R
    COMBINATORICA, 2000, 20 (01) : 119 - 140
  • [4] Coloring Uniform Hypergraphs With Few Edges
    Kostochka, A. V.
    Kumbhat, M.
    RANDOM STRUCTURES & ALGORITHMS, 2009, 35 (03) : 348 - 368
  • [5] A property on reinforcing edge-disjoint spanning hypertrees in uniform hypergraphs
    Gu, Xiaofeng
    Lai, Hong-Jian
    DISCRETE MATHEMATICS, 2018, 341 (02) : 400 - 404
  • [6] Decomposing Complete 3-Uniform Hypergraphs into Cycles
    Guanru LI
    Yiming LEI
    Yuansheng YANG
    Jirimutu
    Journal of Mathematical Research with Applications, 2016, 36 (01) : 9 - 14
  • [7] The spectra of uniform hypertrees
    Zhang, Wei
    Kang, Liying
    Shan, Erfang
    Bai, Yanqin
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 533 : 84 - 94
  • [8] MAXIMIZING SPECTRAL RADII OF UNIFORM HYPERGRAPHS WITH FEW EDGES
    Fan, Yi-Zheng
    Tan, Ying-Ying
    Peng, Xi-Xi
    Liu, An-Hong
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2016, 36 (04) : 845 - 856
  • [9] The Minimum Number of Edges in Uniform Hypergraphs with Property O
    Duffus, Dwight
    Kay, Bill
    Rodl, Vojtech
    COMBINATORICS PROBABILITY & COMPUTING, 2018, 27 (04): : 531 - 538
  • [10] Counting spanning hypertrees in non-uniform hypergraphs based on sum operation
    Zhang, Ke
    Guo, Jiachun
    Dong, Lixin
    Yin, Hongwei
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2024, 35 (04):