Random k-Sat: A Tight Threshold For Moderately Growing k

被引:0
|
作者
Alan Frieze*
Nicholas C. Wormald†
机构
[1] Carnegie Mellon University,Department of Mathematical Sciences
[2] University of Melbourne,Department of Mathematics and Statistics
[3] University of Waterloo,Canada Research Chair in Combinatorics and Optimization, Department of Combinatorics and Optimization
来源
Combinatorica | 2005年 / 25卷
关键词
05D40; 68Q25;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a random instance I of k-SAT with n variables and m clauses, where k=k(n) satisfies k—log2n→∞. Let m0=2knln2 and let ∈=∈(n)>0 be such that ∈n→∞. We prove that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {}^{{\lim }}_{{n \to \infty }} \Pr {\left( {I\;{\text{is}}\;{\text{satisfiable}}} \right)} = \left\{ {^{{1\;m \leqslant {\left( {1 - \in } \right)}m_{0} }}_{{0\;m \geqslant {\left( {1 + \in } \right)}m_{0} }} .} \right. $$\end{document}
引用
收藏
页码:297 / 305
页数:8
相关论文
共 50 条
  • [11] Threshold values of random K-SAT from the cavity method
    Mertens, S
    Mézard, M
    Zecchina, R
    RANDOM STRUCTURES & ALGORITHMS, 2006, 28 (03) : 340 - 373
  • [12] The threshold for random k-SAT is 2k log 2-O(k)
    Achlioptas, D
    Peres, Y
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 17 (04) : 947 - 973
  • [13] Going After the k-SAT Threshold
    Coja-Oghlan, Amin
    Panagiotou, Konstantinos
    STOC'13: PROCEEDINGS OF THE 2013 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2013, : 705 - 714
  • [14] On an online random k-SAT model
    Kravitz, David
    RANDOM STRUCTURES & ALGORITHMS, 2008, 32 (01) : 115 - 124
  • [15] On the behaviour of random K-SAT on trees
    Krishnamurthy, Supriya
    Sumedha
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2012,
  • [16] The Decimation Process in Random k-SAT
    Coja-Oghlan, Amin
    Pachon-Pinzon, Angelica Y.
    Automata, Languages and Programming, ICALP, Pt I, 2011, 6755 : 305 - 316
  • [17] THE DECIMATION PROCESS IN RANDOM k-SAT
    Coja-Oghlan, Amin
    Pachon-Pinzon, Angelica Y.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2012, 26 (04) : 1471 - 1509
  • [18] A BETTER ALGORITHM FOR RANDOM k-SAT
    Coja-Oghlan, Amin
    SIAM JOURNAL ON COMPUTING, 2010, 39 (07) : 2823 - 2864
  • [19] A Better Algorithm for Random k-SAT
    Coja-Oghlan, Amin
    AUTOMATA, LANGUAGES AND PROGRAMMING, PT I, 2009, 5555 : 292 - 303
  • [20] Analysis of backtracking of random k-SAT
    Xu, Ke
    Li, Wei
    Jisuanji Xuebao/Chinese Journal of Computers, 2000, 23 (05): : 454 - 458