The threshold for random k-SAT is 2k log 2-O(k)

被引:131
|
作者
Achlioptas, D
Peres, Y
机构
[1] Microsoft Corp, Res, Redmond, WA 98052 USA
[2] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
关键词
satisfiability; random formulas; phase transitions;
D O I
10.1090/S0894-0347-04-00464-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:947 / 973
页数:27
相关论文
共 50 条
  • [1] Random k-SAT:: A tight threshold for moderately growing k
    Frieze, A
    Wormald, NC
    COMBINATORICA, 2005, 25 (03) : 297 - 305
  • [2] Random k-Sat: A Tight Threshold For Moderately Growing k
    Alan Frieze*
    Nicholas C. Wormald†
    Combinatorica, 2005, 25 : 297 - 305
  • [3] Bounds on Threshold of Regular Random k-SAT
    Rathi, Vishwambhar
    Aurell, Erik
    Rasmussen, Lars
    Skoglund, Mikael
    THEORY AND APPLICATIONS OF SATISFIABILITY TESTING - SAT 2010, PROCEEDINGS, 2010, 6175 : 264 - 277
  • [4] The asymptotic order of the random k-SAT threshold
    Achlioptas, D
    Moore, C
    FOCS 2002: 43RD ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2002, : 779 - 788
  • [5] Satisfiability threshold of the skewed random k-SAT
    Sinopalnikov, DA
    THEORY AND APPLICATIONS OF SATISFIABILITY TESTING, 2005, 3542 : 263 - 275
  • [6] The asymptotic k-SAT threshold
    Coja-Oghlan, Amin
    Panagiotou, Konstantinos
    ADVANCES IN MATHEMATICS, 2016, 288 : 985 - 1068
  • [7] The Asymptotic k-SAT Threshold
    Coja-Oghlan, Amin
    STOC'14: PROCEEDINGS OF THE 46TH ANNUAL 2014 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2014, : 804 - 813
  • [8] Polarised random k-SAT
    Danielsson, Joel Larsson
    Markstrom, Klas
    COMBINATORICS PROBABILITY AND COMPUTING, 2023, 32 (06) : 885 - 899
  • [9] Biased random k-SAT
    Larsson, Joel
    Markstrom, Klas
    RANDOM STRUCTURES & ALGORITHMS, 2021, 59 (02) : 238 - 266
  • [10] A Note on Random k-SAT for Moderately Growing k
    Liu, Jun
    Gao, Zongsheng
    Xu, Ke
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (01):