The threshold for random k-SAT is 2k log 2-O(k)

被引:131
|
作者
Achlioptas, D
Peres, Y
机构
[1] Microsoft Corp, Res, Redmond, WA 98052 USA
[2] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
关键词
satisfiability; random formulas; phase transitions;
D O I
10.1090/S0894-0347-04-00464-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:947 / 973
页数:27
相关论文
共 50 条
  • [31] Random k-SAT and the power of two choices
    Perkins, Will
    RANDOM STRUCTURES & ALGORITHMS, 2015, 47 (01) : 163 - 173
  • [32] Random k-SAT:: the limiting probability for satisfiability for moderately growing k
    Coja-Oghlan, Amin
    Frieze, Alan
    ELECTRONIC JOURNAL OF COMBINATORICS, 2008, 15 (01):
  • [33] A novel weighting scheme for random k-SAT关于随机 k-SAT 的新加权方法
    Jun Liu
    Ke Xu
    Science China Information Sciences, 2016, 59
  • [34] Complexity of k-SAT
    Impagliazzo, R
    Paturi, R
    FOURTEENTH ANNUAL IEEE CONFERENCE ON COMPUTATIONAL COMPLEXITY, PROCEEDINGS, 1999, : 237 - 240
  • [35] On the complexity of k-SAT
    Impagliazzo, R
    Paturi, R
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2001, 62 (02) : 367 - 375
  • [36] Kolmogorov complexity based upper bounds for the unsatisfiability threshold of random k-SAT
    Antonopoulou, Hera
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2020, 23 (07): : 1431 - 1438
  • [37] Regular Random k-SAT: Properties of Balanced Formulas
    Yacine Boufkhad
    Olivier Dubois
    Yannet Interian
    Bart Selman
    Journal of Automated Reasoning, 2005, 35 : 181 - 200
  • [38] 关于(2k×2k,2k,k×2k)类型非线性等重码的构造
    林柏钢
    邱宏端
    通信保密, 2000, (03) : 64 - 69
  • [39] On belief propagation guided decimation for random k-SAT
    Coja-Oghlan, Amin
    Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms, 2011, : 957 - 966
  • [40] An Efficient Approach to Solving Random k-sat Problems
    Gilles Dequen
    Olivier Dubois
    Journal of Automated Reasoning, 2006, 37 : 261 - 276