The threshold for random k-SAT is 2k log 2-O(k)

被引:131
|
作者
Achlioptas, D
Peres, Y
机构
[1] Microsoft Corp, Res, Redmond, WA 98052 USA
[2] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
关键词
satisfiability; random formulas; phase transitions;
D O I
10.1090/S0894-0347-04-00464-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:947 / 973
页数:27
相关论文
共 50 条
  • [21] Sharpness of the Satisfiability Threshold for Non-Uniform Random k-SAT
    Friedrich, Tobias
    Rothenberger, Ralf
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 6151 - 6155
  • [22] Random k-SAT:: Two moments suffice to cross a sharp threshold
    Achlioptas, Dimitris
    Moore, Cristopher
    SIAM JOURNAL ON COMPUTING, 2006, 36 (03) : 740 - 762
  • [23] On threshold properties of k-SAT:: An additive viewpoint
    Plagne, Alain
    EUROPEAN JOURNAL OF COMBINATORICS, 2006, 27 (07) : 1186 - 1198
  • [24] BELIEF PROPAGATION ON THE RANDOM k-SAT MODEL
    Coja-Oghlan, Amin
    Mueller, Noela
    Ravelomanan, Jean B.
    ANNALS OF APPLIED PROBABILITY, 2022, 32 (05): : 3718 - 3796
  • [25] Constraint satisfaction: random regular k-SAT
    Coja-Oghlan, Amin
    STATISTICAL PHYSICS, OPTIMIZATION, INFERENCE, AND MESSAGE-PASSING ALGORITHMS, 2016, : 231 - 251
  • [26] Strong refutation heuristics for random k-SAT
    Coja-Oghlan, Amin
    Goerdt, Andreas
    Lanka, Andre
    COMBINATORICS PROBABILITY & COMPUTING, 2007, 16 (01): : 5 - 28
  • [27] A novel weighting scheme for random k-SAT
    Jun LIU
    Ke XU
    ScienceChina(InformationSciences), 2016, 59 (09) : 5 - 10
  • [28] A novel weighting scheme for random k-SAT
    Liu, Jun
    Xu, Ke
    SCIENCE CHINA-INFORMATION SCIENCES, 2016, 59 (09)
  • [29] Strong refutation heuristics for random k-SAT
    Coja-Oghlan, A
    Goerdt, A
    Lanka, A
    APPROXIMATION, RANDOMIZATION, AND COMBINATORIAL OPTIMIZATION: ALGORITHMS AND TECHNIQUES, PROCEEDINGS, 2004, 3122 : 310 - 321
  • [30] Survey and Belief Propagation on random K-SAT
    Braunstein, A
    Zecchina, R
    THEORY AND APPLICATIONS OF SATISFIABILITY TESTING, 2004, 2919 : 519 - 528