Complexity of k-SAT

被引:94
|
作者
Impagliazzo, R [1 ]
Paturi, R [1 ]
机构
[1] Univ Calif San Diego, San Diego, CA 92103 USA
关键词
D O I
10.1109/CCC.1999.766282
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The problem of k-SAT is to determine if the given k-CNF has a satisfying solution. It is a celebrated open question as to whether it requires exponential time to solve k-SAT for k greater than or equal to 3. Define s(k) (for k greater than or equal to 3) to be the infimum of {delta : there exists an O(2(delta n)) algorithm for solving k-SAT}. Define ETH (Exponential-Time Hypothesis) for k-SAT as follows: for k greater than or equal to 3, s(k) > 0. In other words, for k greater than or equal to 3, k-SAT does not have a subexponential-time algorithm. In this paper; we show that sk is an increasing sequence assuming ETH for k-SAT. Let s(infinity) be the limit of s(k). We will in fact show that s(k) less than or equal to (I - d/k)s(infinity) for some constant d > 0.
引用
收藏
页码:237 / 240
页数:4
相关论文
共 50 条
  • [1] On the complexity of k-SAT
    Impagliazzo, R
    Paturi, R
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2001, 62 (02) : 367 - 375
  • [2] The complexity of unique k-SAT:: An isolation lemma for k-CNFs
    Calabro, C
    Impagliazzo, R
    Kabanets, V
    Paturi, R
    18TH IEEE ANNUAL CONFERENCE ON COMPUTATIONAL COMPLEXITY, PROCEEDINGS, 2003, : 135 - 141
  • [3] The complexity of unique k-SAT:: An Isolation Lemma for k-CNFs
    Calabro, Chris
    Impagliazzo, Russell
    Kabanets, Valentine
    Paturi, Ramamohan
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2008, 74 (03) : 386 - 393
  • [4] Complexity and algorithms for well-structured k-SAT instances
    Georgiou, Konstantinos
    Papakonstantinou, Periklis A.
    THEORY AND APPLICATIONS OF SATISFIABILITY TESTING - SAT 2008, PROCEEDINGS, 2008, 4996 : 105 - 118
  • [5] Polarised random k-SAT
    Danielsson, Joel Larsson
    Markstrom, Klas
    COMBINATORICS PROBABILITY AND COMPUTING, 2023, 32 (06) : 885 - 899
  • [6] The number of k-SAT functions
    Bollobás, B
    Brightwell, GR
    RANDOM STRUCTURES & ALGORITHMS, 2003, 22 (03) : 227 - 247
  • [7] The asymptotic k-SAT threshold
    Coja-Oghlan, Amin
    Panagiotou, Konstantinos
    ADVANCES IN MATHEMATICS, 2016, 288 : 985 - 1068
  • [8] An Approximation Algorithm for #k-SAT
    Thurley, Marc
    29TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE, (STACS 2012), 2012, 14 : 78 - 87
  • [9] Enumerating k-SAT functions
    Dong, Dingding
    Mani, Nitya
    Zhao, Yufei
    PROCEEDINGS OF THE 2022 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2022, : 2141 - 2184
  • [10] The Asymptotic k-SAT Threshold
    Coja-Oghlan, Amin
    STOC'14: PROCEEDINGS OF THE 46TH ANNUAL 2014 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2014, : 804 - 813