Complexity of k-SAT

被引:94
|
作者
Impagliazzo, R [1 ]
Paturi, R [1 ]
机构
[1] Univ Calif San Diego, San Diego, CA 92103 USA
关键词
D O I
10.1109/CCC.1999.766282
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The problem of k-SAT is to determine if the given k-CNF has a satisfying solution. It is a celebrated open question as to whether it requires exponential time to solve k-SAT for k greater than or equal to 3. Define s(k) (for k greater than or equal to 3) to be the infimum of {delta : there exists an O(2(delta n)) algorithm for solving k-SAT}. Define ETH (Exponential-Time Hypothesis) for k-SAT as follows: for k greater than or equal to 3, s(k) > 0. In other words, for k greater than or equal to 3, k-SAT does not have a subexponential-time algorithm. In this paper; we show that sk is an increasing sequence assuming ETH for k-SAT. Let s(infinity) be the limit of s(k). We will in fact show that s(k) less than or equal to (I - d/k)s(infinity) for some constant d > 0.
引用
收藏
页码:237 / 240
页数:4
相关论文
共 50 条
  • [21] THE DECIMATION PROCESS IN RANDOM k-SAT
    Coja-Oghlan, Amin
    Pachon-Pinzon, Angelica Y.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2012, 26 (04) : 1471 - 1509
  • [22] A quantum differentiation of k-SAT instances
    Tamir, B.
    Ortiz, G.
    NEW JOURNAL OF PHYSICS, 2010, 12
  • [23] A BETTER ALGORITHM FOR RANDOM k-SAT
    Coja-Oghlan, Amin
    SIAM JOURNAL ON COMPUTING, 2010, 39 (07) : 2823 - 2864
  • [24] Weak lumpability in the k-SAT problem
    Grinfeld, M
    Knight, PA
    APPLIED MATHEMATICS LETTERS, 2000, 13 (06) : 49 - 53
  • [25] The K-SAT Problem in a Simple Limit
    Luca Leuzzi
    Giorgio Parisi
    Journal of Statistical Physics, 2001, 103 : 679 - 695
  • [26] A Better Algorithm for Random k-SAT
    Coja-Oghlan, Amin
    AUTOMATA, LANGUAGES AND PROGRAMMING, PT I, 2009, 5555 : 292 - 303
  • [27] Analysis of backtracking of random k-SAT
    Xu, Ke
    Li, Wei
    Jisuanji Xuebao/Chinese Journal of Computers, 2000, 23 (05): : 454 - 458
  • [28] The K-SAT problem in a simple limit
    Leuzzi, L
    Parisi, G
    JOURNAL OF STATISTICAL PHYSICS, 2001, 103 (5-6) : 679 - 695
  • [29] On the critical exponents of random k-SAT
    Wilson, DB
    RANDOM STRUCTURES & ALGORITHMS, 2002, 21 (02) : 182 - 195
  • [30] Going After the k-SAT Threshold
    Coja-Oghlan, Amin
    Panagiotou, Konstantinos
    STOC'13: PROCEEDINGS OF THE 2013 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2013, : 705 - 714