Random k-Sat: A Tight Threshold For Moderately Growing k

被引:0
|
作者
Alan Frieze*
Nicholas C. Wormald†
机构
[1] Carnegie Mellon University,Department of Mathematical Sciences
[2] University of Melbourne,Department of Mathematics and Statistics
[3] University of Waterloo,Canada Research Chair in Combinatorics and Optimization, Department of Combinatorics and Optimization
来源
Combinatorica | 2005年 / 25卷
关键词
05D40; 68Q25;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a random instance I of k-SAT with n variables and m clauses, where k=k(n) satisfies k—log2n→∞. Let m0=2knln2 and let ∈=∈(n)>0 be such that ∈n→∞. We prove that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {}^{{\lim }}_{{n \to \infty }} \Pr {\left( {I\;{\text{is}}\;{\text{satisfiable}}} \right)} = \left\{ {^{{1\;m \leqslant {\left( {1 - \in } \right)}m_{0} }}_{{0\;m \geqslant {\left( {1 + \in } \right)}m_{0} }} .} \right. $$\end{document}
引用
收藏
页码:297 / 305
页数:8
相关论文
共 50 条
  • [1] Random k-SAT:: A tight threshold for moderately growing k
    Frieze, A
    Wormald, NC
    COMBINATORICA, 2005, 25 (03) : 297 - 305
  • [2] A Note on Random k-SAT for Moderately Growing k
    Liu, Jun
    Gao, Zongsheng
    Xu, Ke
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (01):
  • [3] Random k-SAT:: the limiting probability for satisfiability for moderately growing k
    Coja-Oghlan, Amin
    Frieze, Alan
    ELECTRONIC JOURNAL OF COMBINATORICS, 2008, 15 (01):
  • [4] Bounds on Threshold of Regular Random k-SAT
    Rathi, Vishwambhar
    Aurell, Erik
    Rasmussen, Lars
    Skoglund, Mikael
    THEORY AND APPLICATIONS OF SATISFIABILITY TESTING - SAT 2010, PROCEEDINGS, 2010, 6175 : 264 - 277
  • [5] The asymptotic order of the random k-SAT threshold
    Achlioptas, D
    Moore, C
    FOCS 2002: 43RD ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2002, : 779 - 788
  • [6] Satisfiability threshold of the skewed random k-SAT
    Sinopalnikov, DA
    THEORY AND APPLICATIONS OF SATISFIABILITY TESTING, 2005, 3542 : 263 - 275
  • [7] The asymptotic k-SAT threshold
    Coja-Oghlan, Amin
    Panagiotou, Konstantinos
    ADVANCES IN MATHEMATICS, 2016, 288 : 985 - 1068
  • [8] The Asymptotic k-SAT Threshold
    Coja-Oghlan, Amin
    STOC'14: PROCEEDINGS OF THE 46TH ANNUAL 2014 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2014, : 804 - 813
  • [9] Polarised random k-SAT
    Danielsson, Joel Larsson
    Markstrom, Klas
    COMBINATORICS PROBABILITY AND COMPUTING, 2023, 32 (06) : 885 - 899
  • [10] Biased random k-SAT
    Larsson, Joel
    Markstrom, Klas
    RANDOM STRUCTURES & ALGORITHMS, 2021, 59 (02) : 238 - 266