Random k-Sat: A Tight Threshold For Moderately Growing k

被引:0
|
作者
Alan Frieze*
Nicholas C. Wormald†
机构
[1] Carnegie Mellon University,Department of Mathematical Sciences
[2] University of Melbourne,Department of Mathematics and Statistics
[3] University of Waterloo,Canada Research Chair in Combinatorics and Optimization, Department of Combinatorics and Optimization
来源
Combinatorica | 2005年 / 25卷
关键词
05D40; 68Q25;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a random instance I of k-SAT with n variables and m clauses, where k=k(n) satisfies k—log2n→∞. Let m0=2knln2 and let ∈=∈(n)>0 be such that ∈n→∞. We prove that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {}^{{\lim }}_{{n \to \infty }} \Pr {\left( {I\;{\text{is}}\;{\text{satisfiable}}} \right)} = \left\{ {^{{1\;m \leqslant {\left( {1 - \in } \right)}m_{0} }}_{{0\;m \geqslant {\left( {1 + \in } \right)}m_{0} }} .} \right. $$\end{document}
引用
收藏
页码:297 / 305
页数:8
相关论文
共 50 条
  • [41] On Belief Propagation Guided Decimation for Random k-SAT
    Coja-Oghlan, Amin
    PROCEEDINGS OF THE TWENTY-SECOND ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2011, : 957 - 966
  • [42] kcnfs:: An efficient solver for random k-SAT formulae
    Dequen, G
    Dubois, O
    THEORY AND APPLICATIONS OF SATISFIABILITY TESTING, 2004, 2919 : 486 - 501
  • [43] The high temperature case for the random K-sat problem
    Michel Talagrand
    Probability Theory and Related Fields, 2001, 119 : 187 - 212
  • [44] An efficient approach to solving random k-sat problems
    Dequen, Gilles
    Dubois, Olivier
    Journal of Automated Reasoning, 2006, 37 (04): : 261 - 276
  • [45] The high temperature case for the random K-sat problem
    Talagrand, M
    PROBABILITY THEORY AND RELATED FIELDS, 2001, 119 (02) : 187 - 212
  • [46] Regular random k-SAT:: Properties of balanced formulas
    Boufkhad, Yacine
    Dubois, Olivier
    Interian, Yannet
    Selman, Bart
    JOURNAL OF AUTOMATED REASONING, 2005, 35 (1-3) : 181 - 200
  • [47] The number of k-SAT functions
    Bollobás, B
    Brightwell, GR
    RANDOM STRUCTURES & ALGORITHMS, 2003, 22 (03) : 227 - 247
  • [48] Improving configuration checking for satisfiable random k-SAT instances
    Abrame, Andre
    Habet, Djamal
    Toumi, Donia
    ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2017, 79 (1-3) : 5 - 24
  • [49] An Approximation Algorithm for #k-SAT
    Thurley, Marc
    29TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE, (STACS 2012), 2012, 14 : 78 - 87
  • [50] Enumerating k-SAT functions
    Dong, Dingding
    Mani, Nitya
    Zhao, Yufei
    PROCEEDINGS OF THE 2022 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2022, : 2141 - 2184