Random k-Sat: A Tight Threshold For Moderately Growing k

被引:0
|
作者
Alan Frieze*
Nicholas C. Wormald†
机构
[1] Carnegie Mellon University,Department of Mathematical Sciences
[2] University of Melbourne,Department of Mathematics and Statistics
[3] University of Waterloo,Canada Research Chair in Combinatorics and Optimization, Department of Combinatorics and Optimization
来源
Combinatorica | 2005年 / 25卷
关键词
05D40; 68Q25;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a random instance I of k-SAT with n variables and m clauses, where k=k(n) satisfies k—log2n→∞. Let m0=2knln2 and let ∈=∈(n)>0 be such that ∈n→∞. We prove that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {}^{{\lim }}_{{n \to \infty }} \Pr {\left( {I\;{\text{is}}\;{\text{satisfiable}}} \right)} = \left\{ {^{{1\;m \leqslant {\left( {1 - \in } \right)}m_{0} }}_{{0\;m \geqslant {\left( {1 + \in } \right)}m_{0} }} .} \right. $$\end{document}
引用
收藏
页码:297 / 305
页数:8
相关论文
共 50 条
  • [21] On the critical exponents of random k-SAT
    Wilson, DB
    RANDOM STRUCTURES & ALGORITHMS, 2002, 21 (02) : 182 - 195
  • [22] Sharpness of the Satisfiability Threshold for Non-Uniform Random k-SAT
    Friedrich, Tobias
    Rothenberger, Ralf
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 6151 - 6155
  • [23] Random k-SAT:: Two moments suffice to cross a sharp threshold
    Achlioptas, Dimitris
    Moore, Cristopher
    SIAM JOURNAL ON COMPUTING, 2006, 36 (03) : 740 - 762
  • [24] On threshold properties of k-SAT:: An additive viewpoint
    Plagne, Alain
    EUROPEAN JOURNAL OF COMBINATORICS, 2006, 27 (07) : 1186 - 1198
  • [25] BELIEF PROPAGATION ON THE RANDOM k-SAT MODEL
    Coja-Oghlan, Amin
    Mueller, Noela
    Ravelomanan, Jean B.
    ANNALS OF APPLIED PROBABILITY, 2022, 32 (05): : 3718 - 3796
  • [26] Constraint satisfaction: random regular k-SAT
    Coja-Oghlan, Amin
    STATISTICAL PHYSICS, OPTIMIZATION, INFERENCE, AND MESSAGE-PASSING ALGORITHMS, 2016, : 231 - 251
  • [27] Strong refutation heuristics for random k-SAT
    Coja-Oghlan, Amin
    Goerdt, Andreas
    Lanka, Andre
    COMBINATORICS PROBABILITY & COMPUTING, 2007, 16 (01): : 5 - 28
  • [28] A novel weighting scheme for random k-SAT
    Jun LIU
    Ke XU
    ScienceChina(InformationSciences), 2016, 59 (09) : 5 - 10
  • [29] A novel weighting scheme for random k-SAT
    Liu, Jun
    Xu, Ke
    SCIENCE CHINA-INFORMATION SCIENCES, 2016, 59 (09)
  • [30] Kolmogorov complexity based upper bounds for the unsatisfiability threshold of random k-SAT
    Antonopoulou, Hera
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2020, 23 (07): : 1431 - 1438