Equivalence of sketches S and T means the equivalence of their categories ModS and ModT of all Set-valued models. E. Vitale and the second author have characterized equivalence of limit-sketches by means of bimodels, where a bimodel for limit sketches S and T is a model of S in the category ModT. For general sketches, we show that an analogous result holds provided that ModT is substituted by a more complex category; e.g., in case of limit-coproduct sketches, that category is ∏(ModT), the free product completion of ModT.