Morita Equivalence of Sketches

被引:0
|
作者
Jiří Adámek
Francis Borceux
机构
[1] Technical University of Braunschweig,Département de Mathématique
[2] Université Catholique de Louvain,undefined
来源
关键词
Morita equivalence; sketch;
D O I
暂无
中图分类号
学科分类号
摘要
Equivalence of sketches S and T means the equivalence of their categories ModS and ModT of all Set-valued models. E. Vitale and the second author have characterized equivalence of limit-sketches by means of bimodels, where a bimodel for limit sketches S and T is a model of S in the category ModT. For general sketches, we show that an analogous result holds provided that ModT is substituted by a more complex category; e.g., in case of limit-coproduct sketches, that category is ∏(ModT), the free product completion of ModT.
引用
收藏
页码:503 / 517
页数:14
相关论文
共 50 条
  • [31] Morita equivalence and Pedersen ideals
    Ara, P
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (04) : 1041 - 1049
  • [32] Fair semigroups and Morita equivalence
    Laan, Valdis
    Marki, Laszlo
    SEMIGROUP FORUM, 2016, 92 (03) : 633 - 644
  • [33] Morita Equivalence for Factorisable Semigroups
    Yu Qun CHEN Department of Mathematics
    Acta Mathematica Sinica(English Series), 2001, 17 (03) : 437 - 454
  • [34] Morita equivalence for graded rings
    Abrams, Gene
    Ruiz, Efren
    Tomforde, Mark
    JOURNAL OF ALGEBRA, 2023, 617 : 79 - 112
  • [35] Morita equivalence of finite semigroups
    Reimaa, Ulo
    Laan, Valdis
    Tart, Lauri
    SEMIGROUP FORUM, 2021, 102 (03) : 842 - 860
  • [36] CATEGORIES OF ACTIONS AND MORITA EQUIVALENCE
    ELKINS, BL
    ZILBER, JA
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (03): : A357 - A357
  • [37] Morita Equivalence for Rings with Involution
    Ara P.
    Algebras and Representation Theory, 1999, 2 (3) : 227 - 247
  • [38] Morita equivalence and quotient rings
    Harris, Morton E.
    JOURNAL OF ALGEBRA, 2018, 502 : 45 - 48
  • [39] Morita equivalence of finite semigroups
    Ülo Reimaa
    Valdis Laan
    Lauri Tart
    Semigroup Forum, 2021, 102 : 842 - 860
  • [40] MORITA EQUIVALENCE AND CYCLIC HOMOLOGY
    MCCARTHY, R
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1988, 307 (06): : 211 - 215