Morita Equivalence of Sketches

被引:0
|
作者
Jiří Adámek
Francis Borceux
机构
[1] Technical University of Braunschweig,Département de Mathématique
[2] Université Catholique de Louvain,undefined
来源
关键词
Morita equivalence; sketch;
D O I
暂无
中图分类号
学科分类号
摘要
Equivalence of sketches S and T means the equivalence of their categories ModS and ModT of all Set-valued models. E. Vitale and the second author have characterized equivalence of limit-sketches by means of bimodels, where a bimodel for limit sketches S and T is a model of S in the category ModT. For general sketches, we show that an analogous result holds provided that ModT is substituted by a more complex category; e.g., in case of limit-coproduct sketches, that category is ∏(ModT), the free product completion of ModT.
引用
收藏
页码:503 / 517
页数:14
相关论文
共 50 条
  • [21] Morita Equivalence for Factorisable Semigroups
    Yu Qun Chen
    K. P. Shum
    Acta Mathematica Sinica, 2001, 17 : 437 - 454
  • [22] Morita equivalence of inverse semigroups
    B. Afara
    M. V. Lawson
    Periodica Mathematica Hungarica, 2013, 66 : 119 - 130
  • [23] Momentum maps and Morita equivalence
    Xu, P
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2004, 67 (02) : 289 - 333
  • [24] Morita equivalence of factorizable semigroups
    Laan, Valdis
    Reimaat, Ulo
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2019, 29 (04) : 723 - 741
  • [25] MORITA EQUIVALENCE FOR IDEMPOTENT RINGS
    GARCIA, JL
    SIMON, JJ
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1991, 76 (01) : 39 - 56
  • [26] Morita equivalence of noncommutative supertori
    Chang-Young, Ee
    Kim, Hoil
    Nakajima, Hiroaki
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (06)
  • [27] On the Morita equivalence of tensor algebras
    Muhly, PS
    Solel, B
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2000, 81 : 113 - 168
  • [28] Noncommutative fermions and Morita equivalence
    Correa, DH
    Moreno, EF
    PHYSICS LETTERS B, 2002, 534 (1-4) : 185 - 194
  • [29] Modular Curvature and Morita Equivalence
    Matthias Lesch
    Henri Moscovici
    Geometric and Functional Analysis, 2016, 26 : 818 - 873
  • [30] Morita equivalence of inverse semigroups
    Afara, B.
    Lawson, M. V.
    PERIODICA MATHEMATICA HUNGARICA, 2013, 66 (01) : 119 - 130