Equivalence of sketches S and T means the equivalence of their categories ModS and ModT of all Set-valued models. E. Vitale and the second author have characterized equivalence of limit-sketches by means of bimodels, where a bimodel for limit sketches S and T is a model of S in the category ModT. For general sketches, we show that an analogous result holds provided that ModT is substituted by a more complex category; e.g., in case of limit-coproduct sketches, that category is ∏(ModT), the free product completion of ModT.
机构:
Univ Tartu, Fac Sci & Technol, Inst Math & Stat, J Liivi 2, EE-50409 Tartu, EstoniaUniv Tartu, Fac Sci & Technol, Inst Math & Stat, J Liivi 2, EE-50409 Tartu, Estonia
Laan, Valdis
Reimaat, Ulo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tartu, Fac Sci & Technol, Inst Math & Stat, J Liivi 2, EE-50409 Tartu, EstoniaUniv Tartu, Fac Sci & Technol, Inst Math & Stat, J Liivi 2, EE-50409 Tartu, Estonia
机构:
Sejong Univ, Dept Phys, Seoul 143747, South KoreaSejong Univ, Dept Phys, Seoul 143747, South Korea
Chang-Young, Ee
Kim, Hoil
论文数: 0引用数: 0
h-index: 0
机构:
Kyungpook Natl Univ, Dept Math, Taegu 702701, South KoreaSejong Univ, Dept Phys, Seoul 143747, South Korea
Kim, Hoil
Nakajima, Hiroaki
论文数: 0引用数: 0
h-index: 0
机构:
Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea
Sungkyunkwan Univ, Inst Basic Sci, Suwon 440746, South KoreaSejong Univ, Dept Phys, Seoul 143747, South Korea