Morita equivalence of pseudogroups

被引:0
|
作者
Lawson, M., V [1 ,2 ]
Resende, P. [3 ]
机构
[1] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
[2] Heriot Watt Univ, Maxwell Inst Math Sci, Edinburgh EH14 4AS, Midlothian, Scotland
[3] Univ Lisbon, Inst Super Tecn, Dept Matemat, Ctr Math Anal Geometry & Dynam Syst, Av Rovisco Pais, P-1049001 Lisbon, Portugal
关键词
Inverse semigroups; Pseudogroups; Morita equivalence; Quant ales; Inverse quantal frames; Etale groupoids; ETALE GROUPOIDS; SHEAVES; QUANTALES;
D O I
10.1016/j.jalgebra.2021.06.036
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We take advantage of the correspondence between pseudogroups and inverse quantal frames, and of the recent description of Morita equivalence for inverse quantal frames in terms of biprincipal bisheaves, to define Morita equivalence for pseudogroups and to investigate its applications. In particular, two pseudogroups are Morita equivalent if and only if their corresponding localic etale groupoids are. We explore the clear analogies between our definition of Morita equivalence for pseudogroups and the usual notion of strong Morita equivalence for C*-algebras and these lead to a number of concrete results. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:718 / 755
页数:38
相关论文
共 50 条
  • [1] INTRANSITIVE PSEUDOGROUPS AND EQUIVALENCE PROBLEM
    HIGA, T
    NAGOYA MATHEMATICAL JOURNAL, 1976, 62 (SEP) : 141 - 171
  • [2] MORITA EQUIVALENCE
    Barrett, Thomas William
    Halvorson, Hans
    REVIEW OF SYMBOLIC LOGIC, 2016, 9 (03): : 556 - 582
  • [3] MORITA EQUIVALENCE AND THE GENERALIZED
    Bischoff, Francis
    Gualtieri, Marco
    Zabzine, Maxim
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2022, 121 (02) : 187 - 226
  • [4] ON MORITA EQUIVALENCE AND DUALITY
    BRODSKII, GM
    RUSSIAN MATHEMATICAL SURVEYS, 1982, 37 (04) : 101 - 102
  • [5] Monoidal Morita equivalence
    Szlachányi, K
    Noncommutative Geometry and Representation Theory in Mathematical Physics, 2005, 391 : 353 - 369
  • [6] Morita equivalence of sketches
    Adámek, J
    Borceux, F
    APPLIED CATEGORICAL STRUCTURES, 2000, 8 (03) : 503 - 517
  • [7] Comments on the Morita equivalence
    Saraikin, K
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2000, 91 (04) : 653 - 657
  • [8] Comments on the Morita equivalence
    K. Saraikin
    Journal of Experimental and Theoretical Physics, 2000, 91 : 653 - 657
  • [9] MORITA EQUIVALENCE OF MONOIDS
    BARJA, JM
    RODEJA, EG
    SEMIGROUP FORUM, 1980, 19 (02) : 101 - 106
  • [10] ON MORITA EQUIVALENCE AND INTERPRETABILITY
    Mceldowney, Paul Anh
    REVIEW OF SYMBOLIC LOGIC, 2020, 13 (02): : 388 - 415