MORITA EQUIVALENCE OF MONOIDS

被引:0
|
作者
BARJA, JM
RODEJA, EG
机构
关键词
D O I
10.1007/BF02572506
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:101 / 106
页数:6
相关论文
共 50 条
  • [1] On Morita Equivalence of Partially Ordered Monoids
    Laan, Valdis
    [J]. APPLIED CATEGORICAL STRUCTURES, 2014, 22 (01) : 137 - 146
  • [2] On Morita Equivalence of Partially Ordered Monoids
    Valdis Laan
    [J]. Applied Categorical Structures, 2014, 22 : 137 - 146
  • [3] Gamma-semigroups with Unities and Morita Equivalence for Monoids
    Sardar, Sujit Kumar
    Gupta, Sugato
    Shum, Kar Ping
    [J]. EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2013, 6 (01): : 1 - 10
  • [4] Morita equivalence for partially ordered monoids and po-Gamma-semigroups with unities
    Gupta, Sugato
    Sardar, Sujit Kumar
    [J]. ALGEBRA & DISCRETE MATHEMATICS, 2014, 18 (02): : 234 - 249
  • [5] MORITA DUALITY FOR MONOIDS
    KNAUER, U
    NORMAK, P
    [J]. SEMIGROUP FORUM, 1990, 40 (01) : 39 - 57
  • [6] MORITA-EQUIVALENCE AND JECOBSON-REES THEOREMS FOR RINGS AND MONOIDS IN CLOSED CATEGORIES
    POLIN, SV
    [J]. DOKLADY AKADEMII NAUK SSSR, 1974, 218 (01): : 32 - 34
  • [7] THE STRUCTURE OF MORITA DUAL MONOIDS
    NORMAK, P
    [J]. SEMIGROUP FORUM, 1992, 45 (02) : 205 - 213
  • [8] MORITA EQUIVALENCE
    Barrett, Thomas William
    Halvorson, Hans
    [J]. REVIEW OF SYMBOLIC LOGIC, 2016, 9 (03): : 556 - 582
  • [9] Semigroups strongly Morita equivalent to monoids
    Lepik, Alvin
    [J]. PERIODICA MATHEMATICA HUNGARICA, 2022, 85 (01) : 171 - 176
  • [10] Morita theorems for partially ordered monoids
    Laan, Valdis
    [J]. PROCEEDINGS OF THE ESTONIAN ACADEMY OF SCIENCES, 2011, 60 (04) : 221 - 237